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A B S T R A C T   

Volumetric Choice Experiments (VCEs) are designed to capture purchase quantities rather than a 
single, discrete choice. They can be seen as an extension of Discrete Choice Experiments (DCEs) 
where individuals decide how many units of a specific good or service to buy/use rather than 
deciding whether to buy/use it or not. There is different information in such integer count data 
than is contained in traditional binary or multinomial discrete choices, which presents new op-
portunities and interesting challenges. Like DCEs, VCEs have different components ranging from 
experimental design to modelling and our focus is on the overall process of implementation rather 
than detailed analysis of components. Our empirical examples come from large-scale VCEs 
embedded in surveys administered to samples drawn from Information Resources, Inc. (IRI) 
consumer panel for two product categories: single serve-coffee K-pods and canned tuna. The 
response for each alternative is a planned purchase count, possibly zero. These counts are fit using 
a negative binomial regression with a multilevel mixed-effects specification. Our VCE design 
allows for statistical identification of own- (brand by size) and cross-price elasticities, plus the 
effects of other attributes and demographics and their interactions with prices. The external 
validity of our approach is compared to results on actual canned tuna data purchases from the 
same IRI panelists. Advantages and limitations of VCEs as well as many unresolved research issues 
are discussed.   

1. Introduction 

This paper provides an overview of the design, implementation, and analysis of Volumetric Choice Experiments (VCEs). As a class 
of procedures, VCEs extend Discrete Choice Experiments (DCEs) to capture the number of times a consumer undertakes an activity. An 
obvious example, and the one motivating our empirical application, is the number of units of a specific product that a consumer buys 
during a single choice occasion. Another example, the number of times an individual plans to visit a local beach during July shows the 
applicability of VCEs is not limited to commercial products. The dependent variable in both these examples takes the form of integer 
counts, as such data is referred to in the econometrics and statistics literature. In applied work, and particularly in marketing, it is often 
referred to as volumetric data. 
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VCEs are of potential interest to researchers across many fields. Researchers in fields like marketing are likely to be predicting how 
many units of a specified product are acquired at a single point in time, and how that quantity changes in response to changeable 
attributes like price. In addition, many choices, which are classically binary and multinomial discrete quantities at the choice occasion 
level, become count data if one introduces a time element such as an hour, week, month, quarter, or year. It is these counts per time 
unit that are often of more interest to decision makers. For example, the number of flights a traveller took on a particular route and 
airline over a specified time period. Product manufacturers may be interested in the number of technical support calls that a new 
product receives in the first quarter after it has been shipped. Researchers in fields like health and tourism are likely to be interested in 
quantity usage questions like how many doctor visits a health plan member made during the month and how many vacation trips 
someone takes in a year, respectively. It is not surprising that a plethora of statistical models for such data have been developed 
(Cameron and Trivedi, 2013). We show how to use experimental design techniques to collect such volumetric choice data for one or 
more competing goods. In doing so, we offer one solution to the ubiquitous endogeneity problem and a high degree of multicollinearity 
between predictors that characterize non-experimental data. 

VCEs can be viewed as a special type of DCE where the outcomes are not discrete. Rather, they are integer counts that range 
between zero and some finite upper bound. For example, consider airline trips between a specific city pair, such as Boston to St. Louis, 
during a well-defined period like a calendar year. As only one round trip per day is possible, the dependent variable must take the form 
of an integer between zero and 365. The attributes of those flights matter to airlines starting with the carrier. There are two carriers, 
American and Southwest, with non-stop flights from Boston to St. Louis. Both generate their own counts of non-stop flights that in-
dividuals take on this route during the year. Examining individual flights likely is of interest to these airlines. There is one American 
flight and two Southwest flights from Boston to St. Louis. These flights differ on attributes like price and departure time. Expanding the 
set of airlines to include flights with one stop allows the analyst to look at price and time trade-offs. An experimental design can vary 
price and other flight attributes, in either an actual market context (revealed preference (RP) data), or a survey context (stated 
preference (SP) data), allowing estimation of the desired trade-off parameters. These parameters are all but impossible to consistently 
estimate from non-experimental data due to how airline revenue management systems work by endogenously increasing (decreasing) 
the prices consumers see when tickets for a flight on a specific day sell faster (slower) than a forecasting model had predicted. Not 
infrequently the price parameter estimate from a simple regression on tickets sold is positive, which is inconsistent with both economic 
theory and intuition. The focus of a DCE is on which of the three flights from Boston to St. Louis a potential passenger takes, if any, on a 
particular choice occasion where random assignment of price can overcome the typical endogeneity problem. The focus of a VCE is on 
how many flights individuals make on each carrier during a period like a year. While related, these two perspectives are quite distinct. 
Concentrating on how service frequency and pricing practices influence total traffic on a route rather than on filling individual flights is 
one the management practices that allowed Southwest to surpass all the legacy carriers to become the airline with the highest market 
capitalization. 

VCEs use experimental design techniques to explore how agents choose the number of units of one item (or a relatively small set of 
related items) in a controlled context. That controlled context experimentally varies factor(s) of interest statistically, thereby statis-
tically identifying at least some of the key parameters in a behavioral model. The controlled context is the ability, which is typically 
embedded in a survey, field/lab experiment, or test market, to randomly assign different agents to different treatments. 

It is useful at the onset of this paper to define the canonical form of a VCE to parallel that of DCE using a single binary discrete choice 
response (Carson and Hanemann, 2005). With the canonical DCE, agents from the population of interest face a randomly assigned price 
and the action taken is defined in 0/1 terms (not taken/taken) is recorded. As the number of such agents who are randomly assigned to 
each specific price used in the DCE and the number of such price points over the relevant range increases, the probability that the 
action is taken at each price is traced out. In the canonical VCE, the response is the number of times the action is taken so that the 
expected number of such actions is traced out. It is the random assignment of price to agents that provides statistical identification of 
the effect of changing price in both DCEs and VCEs. Both canonical forms can be expanded by changing the price attribute to another 
attribute, adding other attributes, adding multiple actions, and obtaining repeat responses from the same agents under different 
conditions. What distinguishes between them is the response being measured and the information about preferences embedded in that 
response. The distinction between the canonical DCE and VCE is that the former is designed to estimate how the propensity to take an 
action like, buying a particular good, changes with price, while the latter is designed to measure how responsive the quantity pur-
chased is to a change in price. 

Changing price to a different attribute, adding additional attributes, considering multiple goods, and observing multiple choice 
occasions does not alter this fundamental difference between DCEs and VCEs, although they create distinct variants of VCEs. Both DCEs 
and VCEs are flexible in terms of handling a range of scenarios to allow different types of choice situations. Consider for instance a DCE 
where an agent, sent shopping for a holiday picnic, is given an instruction to buy only one type of grilling product and then asked 
whether they would buy hot dogs, hamburgers, or veggie burgers, where each type had a price and specific attributes. The same DCE if 
the agent did not face the buy only one-type constraint could have offered additional alternatives: hot dogs and hamburgers, ham-
burgers and veggie burgers, hot dogs and veggie burgers and hot dogs, hamburgers, and veggie burgers. The VCE with the original one- 
type constraint would have elicited a response in terms of standard quantities, where at most one of the quantity responses is positive. 
Without this constraint, a VCE allows for multiple positive quantities. Whether the scenario contains the one-type constraint clearly 
influences the sort of behavior models that one should consider for data from the relevant DCE and VCE. It does not influence, however, 
that the DCE response is measuring purchase propensities and the VCE is measuring quantity propensities. Throwing away information 
on whether a positive quantity response is greater than 1, converts VCE data to DCE data. 

Before proceeding further, it will be useful to note what this paper is not about because these are all likely to be fruitful areas for 
future research. First, it is not about identifying which count data model is best for a particular application. While count regression 

R.T. Carson et al.                                                                                                                                                                                                      



Journal of Choice Modelling 42 (2022) 100343

3

models are useful to our enterprise, there is a large literature on such models. Just as different statistical models have been developed to 
exploit specific features of DCEs, we expect this to also happen with VCEs and that particular experimental designs will be useful 
testing competing specifications. Second, this is not a paper on the linkage between count data and consumer demand theory, although 
this is clearly an area that is underdeveloped relative to that for discrete choice data. Third, this also is not a paper on welfare cal-
culations cast in terms of willingness to pay. While we use a commonly cited variant linking count data to an underlying economic 
model of demand, our VCE framework is amenable to being used with others. Fourth, this paper is not about experimental design, per 
se. The literature on experimental design is large in both the biomedical literature world, where clinical trials implemented using 
random assignment have long been the gold standard and outcomes of interest are often discrete, as well as on the industrial side, 
where outcomes of interest are more often continuous in nature. Designs for discrete choice experiments, where there is a long history 
and large literature, are more directly relevant. While the experimental designs used in our empirical examples are more than 
serviceable, they also are intentionally a bit pedestrian, so they are easy to explain. Finally, the work we report on addresses all the key 
elements needed to undertake VCEs in a straightforward manner using sets of products in categories people would see on a grocery 
store shelf. The basic scenario can be adapted to many other contexts. However, we eschew assigning priority as to who did the first 
VCE. That is probably lost in the ether of academic and commercial research scattered across many fields. 

The remainder of the paper is organized as follows. In Section 2, we provide short overviews of some of the related literature that is 
useful in conceptually thinking about the issues involved in conducting a VCE. Next, in Section 3, we discuss econometric models 
available for modelling count data from VCEs. Section 4 lays out the specific experimental designs used in our empirical examples. 
Section 5 provides a description of the data, which was collected as part of a Social Sciences and Humanities Research Council (SSHRC) 
of Canada grant, as well as the model specification. Section 6 summarizes the model results. In section 7, we examine the external 
validity of our approach against revealed preference (RP) data from the same VCE panellists. Section 8 closes the paper by discussing 
advantages and limitations of VCEs and noting some of the research issues that remain. 

2. A brief tour through relevant related literatures 

The starting point for most readers will be a choice modelling perspective. This class of models starts with the classic binary de-
cision between two alternatives and branches out to include multinomial choices with no natural ordering and choices with a natural 
ordering but without a well-defined commonly accepted quantity metric. In this paper, we consider count data as a form of choice data 
where there is a commonly accepted integer metric. For example, four rolls of toilet paper are twice as many as two rolls. 

Similar counts in the form of the number of items purchased have been of interest to businesses and governments for as long as 
recorded history. In more modern times, the statistically appropriate analysis of count data lagged due to computational difficulties in 
fitting the requisite models. As a result, count data is often treated as a continuous response, a reasonable option when the magnitude 
of most of the counts is large. When almost all counts are very small, they can be examined with one of the standard discrete choice 
approaches ranging from binary probit models to ordered logit models, without much loss of information. There no longer is any need 
for either second-best practice. Now, count data models are routinely presented in standard graduate econometrics texts (e.g., Greene, 
2017); and there are specialized texts solely focused on count data models (e.g., Cameron and Trivedi, 2013), and even on specialized 
subclasses of count data models (e.g., Hilbe, 2011). Software to estimate various types of count data models is readily available in 
statistical packages. 

From our perspective, recognizing that one is collecting data from a sample that has been randomly assigned to an experimental 
treatment in a VCE is more relevant. Before one even gets to the choice tasks propagated by VCEs, the characteristics of “who” is 
assigned to the VCE matter in thinking about an appropriate count data model. Consider two possible samples, one a random sample of 
the general public and one a sample collected from patrons of the only venue in town featuring regular boxing matches. The VCE asks 
about how many times a week the respondent would attend boxing matches at the venue. The admission price is randomly varied, 
along with drink prices, dinner specials, and the quality of the boxers. In the first sample, a large fraction of the sample that opposes 
boxing on ethnical grounds will be completely unresponsive to varying the attributes in any plausible range (e.g., an admission price of 
zero might be of interest, but the venue is not going to pay people simply to walk in the door). These non-responsive people are known 
as “structural zeros”. In contrast, through its construction, the second sample should not contain structural zeros. 

Even though these two samples may receive the same VCE, they will require different count data models, with the first needing a 
type of zero-inflated model to accommodate the structural zeros. In our empirical VCE examples, we drew our samples from IRI 
panelists who have consumed the product of interest in the past, which allows us to avoid the need for distinguishing between 
structural and statistical zeros. However, we are only looking at the intensive margin, and focus on existing customers. Specifically, we 
focus on how planned purchase behavior changes in response to different stimuli. If interest lies in the extensive margin and the 
population of interest is the general public, changing product attributes to switch some non-purchasers to becoming purchasers is 
likely of interest. Then, the experimental control of a VCE can play a key role in helping to identify the role of attributes and covariates 
in distinguishing which people are structural zeros and which are not. There is now the possibility that the switch is not just from zero 
to one but zero to some count larger than one, which provides additional statistical power relative to the usual binary hurdle. 

Having determined the population of interest, it is useful to think about whether RP or SP data will be collected. The VCE approach 
is agnostic on this issue as long as an appropriate experimental stimulus can be applied. The usual RP vs SP decision has RP cast as 
current choice behavior. The only difference here is that the “choice” takes the form of a count. This need not always be the case, 
particularly in an experimental economics context, where a choice made now can influence a later outcome. In such instances, a formal 
VCE structure can help in providing additional statistical power, which aids in the identification of parameters that are not well pinned 
down with traditional binary or multinomial choice information. What is important about RP data is that by itself, it cannot identify 
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what is likely to happen if new brands or attributes are introduced. 
SP data naturally yields planned (under VCE treatment scenarios) actions such as quantities purchased or trip counts. Thus, VCEs 

allow attribute levels that do not currently exist (but which could be provided) to be examined. It should be obvious that the nature of 
the data generating processes (DGP) for the error components in RP and SP models may substantively differ, even if the core preference 
parameters are statistically indistinguishable. Further, both RP and SP approaches are subject to information and strategic consid-
erations (Carson and Groves, 2007) that should be considered in designing a VCE. An interesting research issue going forward is how 
these issues differ between VCEs, more traditional DCEs, and different ways of implementing VCEs. They are more transparent with the 
SP approach, but often pose challenges to interpreting RP data because the analyst is unable to fully control for variation in 
non-experimental factors that interact with the VCE treatments. Prime examples in a marketing context are stockouts facing some but 
not all consumers, as well as coupons (not part of the VCE) presented by some consumers that are not recorded. SP data, by itself, 
cannot identify what will happen in the more distant future, when a product involves learning or network effects. 

Once one makes the RP vs SP decision with respect to the data collection effort, the next decision is whether interest lies in a unique 
choice occasion (Louviere and Hensher, 1983) or in how many times each option is chosen on a set of related choice occasions. A 
stylized example of the first would be a Taylor Swift concert at the Rose Bowl in Los Angeles, where interest lies in how many tickets 
each customer purchased online, with many attributes and associated levels that can be experimentally varied in a VCE. A second 
stylized example is a grocery store shelf with the competing products in a particular category like “canned tuna”, but other obvious 
examples abound. For instance, one can ask a respondent about how many times they plan to visit each of a set of beaches during the 
next month, where in addition to location, beaches might differ by crowding and parking cost. The key distinction between these two 
perspectives is whether the object of choice is competing only against a set of outside options or is competing against a set of other 
related products and the set of outside options. The latter case presents the possibility of estimating a set of parameters, such as 
cross-price elasticities, that describe the relationship between a set of goods, where purchasing multiple or no units of each is possible. 
Indeed, the set of goods that could be examined does not need to be restricted to sets of close substitutes and can be easily extended to 
incorporate complements. As an example, consider someone organizing a community event, where an initial decision has been made to 
serve only three items. Appropriate querying of community members may reveal that serving hamburgers, veggie burgers, and ice 
cream cones (each may have attributes like price, size, and condiments/flavours) is preferable, along some metric such as profit 
maximization, to offerings that included apple pie, fried chicken, hot dogs, salmon and/or snow cones. The choice of which of these 
two perspectives to implement has profound implications for constructing a VCE which we discuss in more detail later. 

The next decision in constructing a VCE is the same as in a DCE, namely how many choice sets each agent will receive. Obviously, a 
researcher implementing a VCE in an SP context has considerable control over this aspect of the research design. However, even in an 
RP context, if one sees the same consumers on a reasonably frequent basis, then a set of offerings and the order in which they are 
presented can be implemented with a VCE. The two guiding principles are that for any given level of statistical precision, there is 
always a trade-off between obtaining choice information from more agents (in the limit, one choice occasion) or obtaining a large 
amount of choice information from a small number of agents. There are well-established arguments for one choice that revolve around 
mimicking the actual choice environment agents face, minimizing opportunities for strategic behavior, and maximizing the ability to 
characterize differences in preferences via interactions with observable covariates such as age (Carson and Czajkowski, 2014). 

There are two main arguments in favor of collecting choice information from multiple choice sets. First, for those doing applied 
work, collecting choice information from multiple choice sets is often the only way to collect enough choice information to answer the 
research questions of interest, given typical research budgets. Secondly, having choice information from the same agent for multiple 
choice sets allows estimation of models that directly control for individual level heterogeneity via fixed effects, random effects, and/or 
the use of a latent class/random coefficients specification for preference parameters (Louviere et al., 2000). While a VCE can be used 
with any number of choices, the implementation requires picking some number of choice sets. How agents in a VCE setting respond to 
multiple choice sets is much less well-known, especially relative to DCEs (Louviere et al., 2013). Our empirical work presented later in 
this paper provides some initial evidence of this. 

Now, the experimental design for a VCE comes into play. Since DCEs have been studied and applied for decades (and are well 
known to this journal), we will not review this literature beyond noting that designs for VCEs are clearly derived from them. Instead, 
we discuss aspects of it as needed, with a focus on statistical identification of key parameters and simple designs. For example, 
experimental designs for DCEs have been available and studied since Louviere and Woodworth (1983). The examples discussed in this 
paper are all variants of “Alternative-Specific Designs” (hereafter, “ASDs”) put forward by Louviere and Woodworth (1983) and 
Louviere et al. (2000), although other designs like “Generic DCEs” (Louviere and Woodworth 1983; Louviere et al., 2000) could be 
used if justified. ASDs “work” because they ensure the attributes of each alternative that can be chosen are orthogonal both within and 
between alternatives. In turn, this allows one to estimate “own-effects” (e.g., own-elasticities) within each alternative and “cross--
effects” (e.g., cross-elasticities) between alternatives. In general, sample size and the number of choice sets used are going to force the 
use of an experimental design that falls short of enumerating all possible combinations of attribute levels like a full factorial design. In 
turn, this raises the issue of which interaction terms, if any, are statistically identified in the specific experimental design chosen for use 
in the study. Note that generic DCEs do not insure and usually do not allow statistical identification of any of the cross-effects (i.e., one 
assumes all effects are “generic”). Of course, one also can use designs that combine both alternative-specific and generic effects in one 
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design, but such hybrid designs are uncommon in applied work. More generally, any design for a DCE is likely to have a VCE coun-
terpart. We focus on illustrating ASDs in this paper because they can be applied in many ways, and naturally permit estimation of 
effects that can be captured by statistical models for counts. 

The final topic addressed in this section before turning to modelling issues is the form in which the dependent count variable is 
obtained. For example, how information on the dependent count variable is obtained. At some level, this seems trivial for RP data, 
simply count-up the number of units purchased. However, for RP data collected using a VCE in an online environment, that may no 
longer be true and, in any case can be made into a testable element of the VCE. One randomly assigned set of online consumers is 
required to type the desired number into a box, while another statistically equivalent set consumers is faced with a (+-) counter where 
they move the number from “0” once they put the item in their shopping cart. The role of such elicitation formats has received 
considerable attention in the SP literature (Mitchell and Carson, 1989; Carson and Hanemann, 2005; Carson and Groves, 2007, 2011) 
where a variety of behavioral and neoclassical explanations investigate why different elicitation formats can produce different results 
have been advanced in the literature. Typing a number into the box is effectively a variant of the long-studied open-ended format, 
while the counter approach is a variant of the bidding game which is known to have a strong anchoring effect. 

The main problem with the opened-ended count format is likely to be similar to that found in SP work eliciting a continuous 
response, namely a high non-response rate, something we have seen in exploratory work. The usual solution has been to move to 
something that looks like a choice format, with the payment card being a popular option. This presents respondents with columns of 
numbers and asks which number on the card, or any number in between, best represents their maximum willingness to pay (Mitchell 
and Carson, 1989). Researchers soon realized that such data was best represented not by a single number, but rather by intervals 
defined by the numbers on the payment card (Cameron and Huppert, 1989). The elicitation format used in our empirical work raises 
similar issues. One of these is a deep conceptual question that asks how consumers make decisions in certain scenarios. For example, 
choosing between 2 units and 3 units. We touch on this in the next section. The other issue is more direct. Any elicitation format that 
frames counts as a discrete choice between different numbers of units from a practical standpoint is likely to have an open-ended 
interval, e.g., choosing 10 or more units, and/or one or more closed intervals, e.g., 10–20 units, and 21 or more units. Such a 
format formally generates interval censored count data. Administrative data or exploratory research may be helpful to the researcher 
in determining which counts should be offered as discrete choices and which as intervals. The implications of how the zero-unit option 
is provided in a VCE are largely unexplored. We expect theoretical and experimental work on the role played by VCE elicitation formats 
to be an active area of research in the future. 

3. Econometric models for count data and some initial efforts at modelling VCE data 

Economic theorists initially thought about consumer demand in terms of continuous quantities for two reasons: 1) the underlying 
mathematics is much easier than alternatives that allow for various types of discreteness; and 2) the only available data for empirical 
work at the time was aggregate in nature, so the discrete aspects of demand did not seem to matter. When individual-level choice data 
became available, attention naturally turned to the modelling of discrete choices, with the random utility model (RUM) becoming the 
workhorse of empirical analysis (McFadden, 1974). Over time, those working with discrete choice data moved to address two key 
limitations of the aggregate conditional logit model. The first is the restrictive assumption that all agents have the same preferences 
except for an idiosyncratic error. These advances involved new functional forms that relax the conditional logit’s independence of 
irrelevant alternative (IIA) assumptions and provide explicit ways to allow for preference heterogeneity in both a frequentist (Train, 
2009) and Bayesian context (Rossi et al., 2005). 

The ability to observe volumetric choices allows the estimation of a different, and, in some ways, richer set of consumer demand 
models. There are two generic approaches under which economic behavior intended to maximize utility yields count data as the 
outcome variable(s) of interest. The first is to simply take a standard model of continuous demand and assume that there are con-
straints that restrict quantities to integers. This strand of the literature takes the integer constraints as given and effectively assumes 
that differences in how agents solve the constraint problem, e.g., whether to pick 2 or 3 cans of tuna when the underlying latent 
(optimal) quantity to demand is 2.48, ends up in a relatively well-behaved error component (Pudney 1989). Rounding downward is not 
the obvious answer, e.g., it may be better to throw away some tuna salad rather than have someone go hungry at the picnic. How this 
constraint problem is solved may be context-specific. One can envision how a VCE could be used to study framing the quantity choice 
question where storability is either emphasized or not. 

The second approach starts with a random utility framework (McFadden 1974) and poses a situation whereby agents effectively 
face what is known as the discrete/continuous choice problem. For example, where there are k competing brands and only one is 
chosen while a continuous quantity of it is consumed (Hanemann, 1984). Von Haefen et al. (2004), Bhat (2005) and a host of papers 
that followed provide various ways to effectively relax the constraint that consumers only purchased one brand using what has become 
known as a Kuhn Tucker demand system (Wales and Woodland, 1983), in various ways. The continuous part may be a truly continuous 
variable, like the quantity of chickpea flour scooped into a plastic bag at the local health food store or how much time is spent looking 
at different exhibits in a museum, or the outcome of a repeated discrete choice process over time. Howell and Allenby (2019) provide 
an interesting application of the latter where the first stage is picking one of several competing platforms. In their case the competing 
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platforms were different brands of coffee makers. The second stage is how many units (e.g., K-pods) of different brands of coffee to 
consume in a week. Also, the second approach tends to put much more attention on the estimation of specific types of demand models. 
Concerns include the role of the budget constraint, definition of the outside good, the interpretation of specific statistics derivable from 
the parameters of such models, and whether restrictions implied by economic or psychological theories hold. We pursue the first 
approach in the context of an econometric model for counts because of its greater simplicity. It is important to note that VCEs are both 
agnostic on this issue and likely to be of considerable aid in discerning between competing specifications. That is because a VCE used to 
provide a clearly exogenous stimulus, not confounded by the multicollinearity problem that attributes of interest often move together 
in non-experimental RP data, can help get around the weak instrument problem that tends to inflate confidence intervals for the test 
statistics of interest. 

Before moving to specific count data specifications, it is important to note that variations of discrete choice and count data models 
can and have been used in the past to examine the sort of count data we are interested in. One of the earliest examples of what we 
would now think of as a VCE is Carson et al. (1990) who offered choice sets concerning how many stamps a survey respondent would 
purchase, where each stamp allowed one Kenai King salmon to be caught. They fit a nested logit model to the data, where one of the 
main foci of the analysis is similar to the zero-inflated part of some count data models. The first nest in the model separates those in and 
out of the market to catch a Kenai King salmon, one of the world’s premier trophy fish, in a carnival atmosphere during its relatively 
short spawning run on the Kenai River, where large gaffing hooks had to be eventually banned due to personal injuries. The other side 
of the nested logit model had the different number of stamps (capped) that could be purchased as outcomes. Their focus on how the 
quantity purchased changes with price is similar to that of many likely marketing VCE application. 

Influenced by contingent valuation studies, another clear precursor is the contingent behavior recreational demand literature. 
Englin and Cameron (1996) asked respondents questions about how many times they would visit a site if it had an entrance fee of $X. A 
shift from asking about changes in cost to changes in water levels at a site is provided in Eiswerth et al. (2000). The nature of these 
contingent behavior questions, coupled with more extensive scenario elaboration than is usually seen with commercial products, led to 
a nature “intended” or “planned” actions (i.e., recreational trips) under the given scenario interpretation. These early contingent 
behavior studies often had a focus on augmenting count data-oriented travel cost models estimated with RP data by asking about the 
number of trips the respondent would plan to take under conditions at a site that were not identified in the existing RP data. Over time 
this literature moved toward consideration of multiple sites and multiple conditions (e.g., Alberini and Longo, 2006). Some of these 
contingent behavior studies are clearly applications of a VCE framework to elicit SP data in a specific context. More generally, they can 
be seen as eliciting a quantity response given some type of implicit cost, which naturally leads to casting results in terms of a metric like 
willingness to pay. Many health care utilization situations are similar. 

The work we report here is a direct descendent of a 2010 study we did for the Australian wine industry, where the main interest 
focused on how purchased quantities would likely change if the Australian government implemented a major tax increase on alcohol 
that had been proposed (Corsi et al., 2016). The study was implemented using a survey administered to an online internet panel 
provided by Pure Profile. Respondents were shown photographs, with descriptive language, concerning 14 types of products (e.g., a 
package of beer) and told their preferred brands would be available. The proposed tax varied with alcohol content. Respondents were 
given sixteen choice sets and used a quantity counter with a plus and a minus sign to indicate their preferred quantities of each of the 14 
types of alcohol. The first eight elicited quantities had pre-tax increase attribute levels, while the second eight shifted the price 
attribute (tied to alcohol content) to simulate various tax increases. A zero inflated count data model was fit to accommodate a 
non-trivial fraction of the sample who did not purchase alcohol. 

Turning to the marketing side. Hardt et al. (2017) implemented a VCE for pizza choices where a respondent can choose quantities of 
six different alternatives in 12 choice sets that vary by the levels of price and six other attributes. It uses a normal hierarchical Bayes 
model with a Kuhn Tucker framework that ignores the integer nature of response, but combines both RP and SP data, looks at 
compensatory and non-compensatory decision rules and the role of consideration sets and budget constraints. In the opposite direction 
from assuming continuous demand, Ardeshiri and Rose (2018) implemented a meat choice experiment in which respondents were able 
to select more than one type of meat and a discrete quantity of each. Finding the quantities picked to be almost always zero, one, or 
two, they estimate an interesting variant of an ordered logit model. In a choice experiment involving beer, wine, and spirits, Lu et al. 
(2017) demonstrated the versatility of the DCE approach by bundling individual items to create new goods. For example, buying three 
bottles of wine described by price and attributes as displaying the type of alcohol (e.g., Chardonnay of a particular quality) vs. buying 
other bundles that could differ by quantity, type, and quality (e.g., four bottles of a particular brand of vodka each with a different 
flavour added at a specified price). This effectively converts quantity into an attribute and allows the examination of how non-constant 
unit pricing can influence purchase behavior. Models along these lines can still be usefully employed to look at data generated by VCEs, 
but two caveats need to be made: 1) the size of the counts in all these papers is quite small, which make a pure discrete choice approach 
more tractable, and 2) they tend to not exploit all the statistical information present in the counts. 

In a standard exposition of the first approach of assuming underlying (latent) continuous demand and constraints that restrict 
quantities to integers, Hellerstein and Mendelsohn (1993) provided a theoretical foundation of count data models that can be used to 
perform consumer welfare. They showed that if the mean of Poisson is expressed as λ = exp(Xβ), consumer surplus equals − λ

βprice
= −

exp(Xβ)
βprice

, which is the same as the standard formula used in the continuous semi-log model. They also showed that a standard Poisson 

demand model can be derived from a linear (normal) model of continuous quantity that imposes a non-negative integer quantities 
constraint. Failure to impose this constraint can lead to biased results when continuous demand models are used. Hellerstein and 
Mendelsohn also show the same model can be derived as a repeated discrete choice model over a defined time interval. In contrast to 
standard RUM models, count data models provide an interpretable estimate of the absolute scale parameter, which has long been the 
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primary confounding factor in choice modelling. Count data regression models (Cameron and Trivedi, 2013) retain this information 
and allow for estimation of key quantities, such as price elasticities, useful for product decision making. 

The Poisson regression model is widely used as the baseline model of count data and is the counterpart of the conditional logit 
model for DCEs. We present this model but move to more general models that overcome the restricted assumptions of this baseline 
model. The probability density function of the Poisson model can be expressed as (Greene, 2017): 

Prob(Yi = yi|Xi) =
eλi λi

yi

yi!
, yi = 0, 1, 2….and i = 1, 2, 3.. N, (1)  

where, yi = 0, 1,2…. are the realized values of the random variable, λi is the mean and variance of yi., and Xi is a covariate vector. The 
most common formulation of the conditional mean vector is: 

λi = eX′

i β (2) 

An illustrative example consistent with an underlying linear logistic model for each purchase/not purchase decision is: λ = exp[β0 
+ β1Price + β2Income + β3Attributes + β4Demographics]. Use of logged variables produces coefficients with an elasticity interpre-
tation. With no income effect, the ordinary Marshallian consumer surplus estimate for the Poisson model in (1) is -λ/β1. Marshallian 
and Hicksian welfare measures (e.g., maximum willingness to pay) for more complex count data models can be derived in a manner 
like that used for discrete choice models (Carson and Hanemann, 2005). 

This base model is restricted because it assumes events occur independently over time and that the conditional mean and variance 
are equal. The Negative Binomial model overcomes these limitations by allowing inter-person heterogeneity (λi can vary randomly 
accordingly to a probability distribution ). One way to add this unobserved heterogeneity in λi is to replace it with a stochastic 
equation, i.e., ln(λi) = X′

iβ+ εi. For mathematical convenience, a gamma distribution is assumed for f(λi) i.e., λi ∼ φi, νi; this 
assumption leads to the density of the most widely used Negative Binomial model (NB2) as (Cameron and Trivedi 1986, p. 33) 

Prob(Yi = yi|Xi,φi, νi)=
Γ(yi + νi)

Γ(yi + 1)Γ(νi)

(
νi

νi + φi

)νi
(

φi

νi + φi

)yi

(3)  

with E[Yi] = φi and Var[Yi] = φi +
1
νi

φ2
i . Parameterization of νi follows the assumption that exponentiated its distribution follows a Γ(1/ 

α, α), where α is the unknown scale parameter. The range of α is often restricted to rule out the unlikely possibility of under dispersion, 
where the conditional variance is less than the conditional mean, and estimated in log form, reducing computational cost. It can be 
parameterized with covariates, but typically with considerable computational cost. This variant of the negative binomial shares a 
property with the quasi-ML Poisson model. Specifically, the shared property is that estimation of the preference parameters in the 
conditional mean part of the model is robust to misspecification of the variance component of the model, as long as the conditional 
mean is correctly specified. 

In this formulation the variance exceeds the mean if both φi, νi > 0. Non-negativity in the mean is obtained by expressing φi =

exp(X′

iβ). The NB2 model is the ‘apparent contagion’ model widely used in biometrics and avoids the independence assumption of the 
Poisson model. Cameron and Trivedi (1986) noted that “individuals have a constant but unequal probability of experiencing the 
events.” This model allows for over-dispersion arising from unobserved heterogeneity and temporal dependency. It is more 
straightforward in a count data model than a discrete choice model to deal with potential endogeneity if a suitable instrument is 
available. However, avoiding such endogeneity issues is a major advantage of SP data in both a DCE and VCE context. Like discrete 
choice models, one also can allow for different types of correlation, including choices by the same agent over time and across choices 
involving similar goods at the same time. Such correlations are the key to understanding why an agent might purchase positive 
quantities of more than one of the competing goods. They can be driven by heterogeneity of preferences within a household, e.g., 
parents like one type of cereal while the kids like another, as well as different contexts, e.g., taking tuna salad to work versus making it 
for a big picnic gathering, as there is satiation as the quantity of a particular good increases that leads to a shift to another or explicit 
variety seeking. 

Assumption of a particular economic model, if it is a valid representation, can impose useful structure on a system of count data 
models for different goods, which facilitates clear statistical identification and interpretation of key quantities of interest (Bhat et al., 
2015). The main threats to this approach are endogeneity, measurement error, and omitted variables that go beyond the usual cor-
rectness of specification issue and are well known in other contexts. Further, the restrictions with real content from micro theory hold 
at the individual level. They usually only transfer to the aggregate (e.g., average sample) context under very stringent additional 
conditions. VCEs should help to open a new front on which to explore these issues. 

Count data models are available in both frequentist and Bayesian paradigms and allow for fixed and random effects, which can be 
useful when multiple observations on the same unit of analysis are available (Hausman et al., 1984). They are available for both 
individual level data and for aggregate data (Hellerstein, 1991). Models for systems of correlated count data processes oriented toward 
competing goods (Herriges et al., 2008) and across space (Bhat et al., 2014) have been put forward. Flexible semi-parametric and 
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robust count data estimators are available as are latent class and random parameter variants (e.g., Chiou et al., 2019). Cameron and 
Trivedi (2013) provide an excellent overview of most of the issues involved in formulating and estimating count data models. A 
wide-range of standard and modified (e.g., censored, zero-inflated) count data models are available in statistical packages like 
NLOGIT, R, SAS, SPSS, and Stata. Relevant code to estimate different count data models for Julia, Mathematica, Matlab and Python 
also can be found easily. 

4. Design of the volumetric choice experiments 

In this section we look at a series of illustrative designs for different types of VCEs. We first look at a simple multivariate extension of 
the canonical VCE using an alternative specific design (ASD) for four airlines flying a specific route where the only attribute being 
varied is price and a respondent indicates how many times they would fly each airline during the time period on the route. The next 
two examples, single serve coffee (i.e., K-pods) and canned tuna, look at situations where responsiveness of the quantity purchased is 
the main focus. 

4.1. Design and implementation of simple ASD VCEs 

We begin by considering a simple ASD for a pricing experiment. The ASD is the type common in marketing, transportation, public 
policy, and many other areas. Consider potential price differences in airfares for cross-country flights in Australia between a major city 
pair like Sydney-Perth. Let the competitors be the airlines that used to fly this route: Qantas, Virgin Australia, Jetstar, and Tiger. Now 
assume each airline uses four fare prices on the route. The particular fare a prospective flyer sees varies with the airline’s projected 
demand for the flight, the source of endogeneity that makes the estimation of price elasticities from actual flight purchase data un-
reliable. Fig. 1 illustrates one possible design for this problem based on a 44 orthogonal main effects design. 

Table 1 lists the example fare levels, and Fig. 2 illustrates how a resulting VCE task might look if we use the number of flights for 
Sydney to Perth in the next quarter (of the year) for business purposes. We assumed, looking at RP data, that the vast majority of 
business travellers on that route make less than 7 flights per quarter. 

We now move on to examples of two common consumer product categories on which we collected data on using VCEs for this 
paper: single serve-coffee and canned tuna. Example choice sets can be found in Appendix A (Figs. A.1-A.2). In these two examples, we 
switch from asking about the number of flights on the Sydney-Perth route over a defined period to the more typical for a DCE, asking a 
single purchase occasion, where the instructions effectively ask respondents to treat each choice occasion independently, a potentially 
testable assumption (Day et al., 2012) both in a DCE or VCE. The ability of a consumer to vary the quantity purchased as price varies 
allows for the possibility of stockpiling and with canned tuna being a prime example. 

Fig. 1. 44 orthogonal main effects design.  
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Table 1 
Fare levels used in the VCE design and resulting task.  

Airline Fare Level 0 Fare Level 1 Fare Level 2 Fare Level 3 

Jetstar 275 350 425 500 
Qantas 400 500 600 700 
Tiger 225 275 325 375 
Virgin 325 400 475 550  

Fig. 2. A possible VCE task based on Fig. 1 and Table 1.  

Table 2 
Single serve coffee: Attributes and their levels.  

Attributes\Levels  Level 0 Level 1 Level 2 Level 3 

Brand/Price ($) Starbucks 0.50 0.65 0.80 0.95  
Donut House 0.40 0.53 0.67 0.80  
Folgers 0.45 0.53 0.62 0.70  
Green Mountain 0.35 0.50 0.65 0.80 

Number of Cups in a Package  12 32 52 72 
Brewing Method  Keurig K-Cup Keurig Vue Cup   
Blend  House Blend Breakfast Blend Columbian French Roast 
Organic Info  Non-organic Organic   
Flavour  Not Flavored Flavored   
Available in  Caffeinated Decaffeinated    

Table 3 
Canned tuna: Attributes and their levels.  

Attributes\Levels  Size (Oz) Level 0 Level 1 Level 2 Level 3 Level 4 

Brand/Price ($) Starkist 6 2.69 2.89 3.09 3.29   
12 5.38 5.78 6.18 6.58   

Bumble Bee 6 2.89 3.09 3.29 3.49   
12 5.78 6.18 6.58 6.98   

Chicken of the Sea 6 1.99 2.09 2.29 2.39   
12 3.98 4.18 4.58 4.78   

Store Brands 6 1.89 2.09 2.29 2.49   
12 3.78 4.18 4.58 4.98   

Any Other Brands 6 2.69 2.99 3.29 3.59   
12 5.38 5.98 6.58 7.18  

Type   Albacore Tuna    
Packed in   Oil Water    
Form   Chunky Solid    
Coupon($)a   0 0.50 0.75 1.00 1.50  

a The proportions of levels differ with about 77.5% being $0 to be consistent with the RP data. 
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4.2. Product categories, their design attributes and designs 

4.2.1. Single serve-coffee design 
Table 2 shows the attributes and levels used in the VCE designs for single serve-coffee. Each of the four major brands has six at-

tributes (brewing method, blend, organic info x flavour, caffeine, and package size x price). 
The single-serve coffee (i.e., K-pods) design is an ASD. There are four major brands plus a fifth option described as “Some other 

Brand.” The four major brands are Starbucks, Donut House, Folgers, and Green Mountain. Each of the four major brands has six at-
tributes (brewing method, blend, country of origin x flavour, caffeine, and package size x price). The “Some other Brand” option has 
those six attributes plus four levels of brand names. Taken together the design is a (2 × 4∧3 × 8)∧4 × (2 × 4∧4 × 8), or the total factorial 
is 2∧5 × 4∧16 × 8∧5. Additionally, an orthogonal 16-level column is used as a blocking factor. An orthogonal main effects design (from 
the factorial in 128 rows) is implemented, and the blocking column is used to make 16 blocks (versions) of eight choice sets. A property 
of this design is that all own- and cross-effects can be estimated independently of one another. 

4.2.2. Canned tuna design 
Table 3 below shows attributes and levels used in the VCE designs for canned tuna. 
The canned tuna design used an ASD and focused on the three top-selling brands as revealed by IRI panel purchases: Starkist, 

Chicken of the Sea, and Bumblebee. These three brands represent over 90% of store purchase volumes. We also include a Store brands 
category (e.g., Walmart, Kroger) and “Any other Brand” category (e.g., Tonno Genova, Van Camp, Wild Planet) to ensure these al-
ternatives (often store dependent) are included. Although canned tuna is available in cans of different sizes, the vast majority of sales 
are in 10–12 ounce and 4-to-6-ounce cans, which shows within brand size variation and may be related to input cost. We standardized 
the choice tasks for respondents using 6 and 12 ounces as the small and large size alternatives. This created 10 options in each choice 
set. Each brand had five attributes (price, coupon, type of tuna, packaging, and form). We varied price (combined with size as one 
attribute), what the tuna was packed in (oil or water), the type of tuna (Albacore or “Tuna”) and the form of the tuna (Solid or Chunky). 
Finally, because coupons are an important feature of the canned tuna market, we varied whether there was a coupon available and, if 
available, its value). 

RP data from the IRI panel showed that substantially less than 5% of all canned tuna purchases involved more than 6 cans. 
Therefore, we asked respondents about purchase counts ranging from 0 to 6 and then used “more than 6” cans as the upper category. 
Technically, this implies that a censored count data model should be used. We did not pursue this here, so we were able to provide 
estimates using readily available software, and we used 7 as the value for the fraction of the sample (~1%) that picked the largest 
quantity. This results in confidence intervals that are slightly too large. In many SP contexts, it would be possible to implement in a 
follow-up question asking respondents in this highest open-ended interval for an exact quantity. 

Price and coupon are 8-level attributes, while the other attributes all have 2-levels. A 16-level orthogonal blocking column was used 
to create blocks or “versions” of the VCE. Taken together, this produces a 16 × 8∧10 × 2∧15 factorial. We selected the smallest 
orthogonal main effects design from that factorial. This design produced 256 choice sets. IRI panellists were randomly assigned to one 
of the 16 blocks and then received the 16 choice sets in that block in a random order. This design allowed independent estimation of all 
own- and cross-effects. Due to the size of this design, we do not reproduce it in this paper, but it is available from the authors on request. 
The IRI panel members in our sample were asked to indicate the number of cans they would be most likely to purchase in each of the 16 
choice sets. 

5. Data, and model specification 

5.1. Data description 

We presented our IRI panelists with a choice task. For example, what they would see on a grocery store shelf when purchasing 
single-serve coffee or canned tuna. For single-serve coffee, 1 182 panelists viewed 5 alternatives at a time and answered 16 choice sets 
(randomly assigned to 1 of 8 blocks of 16 sets). This produced 94,560 choice occasions. For canned tuna, 750 respondents viewed 10 
tuna options at a time and answered 16 choice sets (randomly assigned to 1 of 16 blocks of 16 sets). This produced 120,000 choices. A 
small number of respondents who did not provide a single positive response to any of the choice sets were dropped under the 
assumption that they effectively were not participating in the survey. 

A natural question to raise asks how different the data we collected looks from the standard DCE where in each choice set a 
respondent pick at most one unit from a set of k alternatives. While there is no single way to examine this, there are four obvious 
summary statistics. First, we examine this by looking at the percent of respondents who pick more than 1 alternative in at least one 

Table 4 
Alternatives and counts inconsistent with a standard DCE.  

Category Respondents Choice Sets Respondents Choice Sets  

Alternatives > 1 Alternatives > 1 Count > 1 Count > 1 

Coffee 58.3% 21.6% 45.2% 11.3% 
Tuna 72.9% 33.8% 86.3% 32.8%  
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choice set. By construction, this percentage is zero in a standard DCE. Second, what percent of choice sets have more than one 
alternative picked. This is analogue of the first measure defined at the choice set occasion rather than the respondent level. Third, what 
fraction respondents ever indicate a quantity greater than 1. Fourth, the same conceptual measure but now defined at the level of 
individual choice sets. 

Table 4 displays these statistics. The first column shows, that for our three common grocery store categories, most respondents 
chose more than one alternative in at least one choice set, which is behavior they could not exhibit in a standard DCE. The second 
column suggests that, while this is not the norm, it is also not uncommon. A little over 20% of choice sets have more than one 
alternative picked for the coffee, with this fraction moving to a little over a third of choice sets for canned tuna. This fraction is 
substantially higher if attention is restricted to choice sets where at least one product had a positive quantity chosen. When picking a 
count greater than one, we see considerable variation among respondents by product category in a way that makes intuitive sense. A 
little over 45% of respondents engage in this behavior with respect to coffee (where it is important to keep in mind that the counts are 
on packages of K-pods not individual pods), and just over 86% with respect to canned tuna. For coffee, the number of choice sets that 
have at least one count that is two or more is just over 10%, while being over 30% for tuna. 

5.2. Model specification 

We focus our modelling and estimation attention on the canned tuna data because it provides a richer set of options to illustrate 
possibilities. The tuna VCE design allowed estimation of own-price elasticities for each brand-size combination as well as key cross- 
price elasticities. In the simplest model statistical identification follows from including the log price of each choice alternative in 
the model as well as the log prices of all the other goods that a respondent could have purchased in the choice set in the regression 
model, coupled with a VCE design that ensures the cross-price elasticities are not confounded with other quantities of interest. These 
cross-elasticities have long been estimated using aggregate data in regression models. These models, though, because of data limi-
tations tend to impose strong restrictions (in prior empirical work with an appreciable number of competing options) on the rela-
tionship between the elasticities that effectively reduce the number of terms that need to be estimated (Liu et al., 2009). Our 
framework expands what can be practically modelled. We fit a Negative Binomial count data model to allow deviation from the usual 
Poisson equality restriction on the mean and variance. The eligibility restriction imposed for the random sample taken from IRI’s 
consumer panel was that they purchased canned tuna at least once in the last year, which rules out the possibility that observed zeros 
are structural rather than statistical in nature. 

Our model has multiple choice occasions by our respondents. There is less information in datasets of this sort relative to a simple 
random sample where one choice per respondent is observed. We account for this by allowing correlation between individual-level 
unobservable components along with robust standard errors clustered at the individual respondent level. This effectively reduces 
the sample size and prevents artificial inflation of statistical significance levels (Wooldridge 2010). Given the sizeable dimensions of 
our respondent sample size, choice alternatives, and choice sets, this allowed us to obtain precise estimates of the nature of preference 
heterogeneity with respect to coffee and tuna brands. We modelled preference heterogeneity in a way that likely will make the results 
more relevant for the decision-making process compared to the standard practice of sweeping all this heterogeneity into random 
parameters. We did this by using a multilevel mixed-effects specification, where many demographic covariates have fixed parameters. 
This accounts for much of the preference heterogeneity. Other variables, including some interactions with demographic measures, are 
represented by random parameters and absorb much of the remaining preference heterogeneity. 

There are two standard ways of entering demographic covariates in a RUM model. Both these ways, interactions of a covariate with 
an attribute (e.g., men and women have different price elasticities) in a deterministic or random component context and interaction of 
a covariate with an alternative specific constant (e.g., a particular brand is more likely to be purchased by men than women), are also 
available with count data models. There is also a third way in count data models-directly add the demographic variable to the model as 
a covariate. Such a covariate would drop out of a RUM fit to data from a DCE, because the value for the covariate is the same for all 
alternatives. In a count model a covariate can shift the total quantity in category up and down. This can be particularly important for a 
variable like household size. 

The standard part of the model structure involved the product attributes. These appear as indicator variables and include the brand- 
specific constants. The one exception involves coupons which is represented by two variables. The first is an indicator for whether a 
specific alternative has a coupon, while the second is the log of the coupon’s amount if present (and zero otherwise). This allowed us to 
look at whether the coupon presence had an influence, distinct from its monetary value, and to look at whether respondents treated the 
coupon’s value in the same way as a similar price change. Parameters in this part of the model were specified as random parameters 
with normal distributions. The availability of individual panellist demographics allowed us to explore their role in driving volumetric 
choices and understanding price sensitivity. 

Demographic variables include the categories of Female, White, Hispanic, Presence of Children as binary indicators, household 
size, income (as a set of five categories), and Census Region (as a set of four categories). Each was entered by itself and interacted with 
its own price elasticity. This allowed a wide range in individual level variation of own-price elasticities tied to variation in observable 
covariates, which underpins the set of brand-specific own- and cross-price elasticities noted above. We also included a set of indicators 
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for the specific block of choice sets a respondent received. This is done because some of these blocks idiosyncratically have sets of 
scenarios that, taken as a whole, the respondents saw as more or less attractive than the average or reference block. This effect should 
not be confounded with the preference parameters of interest. 

6. Model results 

The general model estimated for both categories (self-serve coffee and canned tuna) was a multilevel mixed-effects negative 
binomial regression model with robust (White) standard errors and clustering to account for multiple observations per respondent. The 
main specification involved a full set of own- and cross-price elasticities, brand-specific constants, and other attributes, with de-
mographic variables as independent demand drivers, interactions between own price and demographic variables. The random pa-
rameters component for the canned tuna model was estimated using Stata menbreg procedure including a full covariance matrix for 
brands, log price per unit and the other attributes varied in the VCE (see Stata v. 16 for details; StataCorp, 2019). The model speci-
fication provides an estimate of the natural log of the scale parameter α, which helps to distinguish the negative binomial specification 
from that of the Poisson. Estimates for this negative binomial scale parameter for both categories rejects the equality of the conditional 
mean and variance, underlying the Poisson at the p < 0.01 level, in favor of over-dispersion. Complete model details are presented for 
canned tuna in Appendix B. 

Most regressors are coded as 0/1 or multinomial indicator variables. Estimated effects thus take on the standard interpretation of 
being relevant to the baseline reference category. As with DCEs, other normalizations such as effects codes or casting covariates as 
standard deviations from demeaned variables. Such normalizations, which retain the same information, may aid in numerical stability 
of specific algorithms or facilitate a particular interpretation of model parameters. Other variables, such as household size and price 
have well defined natural metrics, people and dollars, and hence straightforward elasticity interpretations. More generally, the 
exponentiated form of the conditional mean specification (2) of most count data models needs to be taken into account in calculating 
many standard quantities of interest. For example, an exponentiated coefficient of zero in (2) indicates no influence on the conditional 
mean. Fortunately, some statistical packages such as Stata’s margin command are designed to automatically take this into account. 
There is a ‘shiny’ simulation package (https://stefany.shinyapps.io/RcountD/) for R that allows considerable flexibility in defining 
how particular effect sizes are calculated. 

6.1. Summary results for single-serve coffee 

The five own-price and twenty cross-price elasticities for single-serve coffee are summarized in Table 5. As expected, all own-price 
elasticities are negative. It is important to note that these parameter estimates reflect the relative differences between own-price 
elasticities of brands rather than the actual brand price elasticity, because we allow individual demographics to interact with an in-
dividual’s generic price elasticity. The actual model allows different people to have different base price sensitivities for purchasing any 
of these product categories. 

Own price elasticities differ across brand, being highest for Other Brands (β = − 1.572, p = 0.001) and lowest for Starbucks (β =

Table 5 
Single-serve coffee: Own and cross price elasticities.   

Count Coef. Robust Std. Err. z P>|z| 

Own Price Effects Starbucks − 1.093 0.540 − 2.03 0.043 
Donut House − 1.397 0.501 − 2.79 0.005 
Folgers − 1.403 0.547 − 2.57 0.010 
Green Mountain − 1.149 0.495 − 2.32 0.020 
Other Brands − 1.572 0.489 − 3.21 0.001 

Cross Price Effects Starbucks_Donut House 0.154 0.097 1.58 0.114 
Starbucks_Folgers 0.101 0.107 0.95 0.342 
Starbucks_Green Mountain 0.028 0.100 0.28 0.777 
Starbucks_Other Brands 0.165 0.132 1.26 0.209 
Donut House_Starbucks 0.196 0.092 2.13 0.034 
Donut House_Folgers 0.169 0.080 2.10 0.036 
Donut House_Green Mountain 0.115 0.068 1.68 0.093 
Donut House_Other Brands 0.208 0.077 2.69 0.007 
Folgars_Starbucks 0.216 0.198 1.09 0.275 
Folgars_Donut House 0.259 0.127 2.04 0.041 
Folgars_Green Mountain 0.229 0.142 1.61 0.101 
Folgars_Other Brands 0.025 0.159 0.16 0.873 
Green Mountain_Starbucks 0.029 0.083 0.35 0.727 
Green Mountain_Donut House 0.075 0.069 1.08 0.278 
Green Mountain_Folgers 0.222 0.076 2.91 0.004 
Green Mountain_Other Brands 0.063 0.081 0.78 0.435 
Other Brands_Starbucks − 0.043 0.059 − 0.73 0.464 
Other Brands_Donut House 0.032 0.054 0.58 0.562 
Other Brands_Folgers 0.056 0.053 1.06 0.287 
Other Brands_Green Mountain 0.069 0.046 1.49 0.135  
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− 1.093, p = 0.043). Out of twenty cross-price elasticities, 5 are statistically significant at the 0.05 level. For example, the cross-price 
elasticity of Folgers with Donut House was 0.259 (p = 0.041), but cross-price elasticities are not necessarily symmetric. The cross-price 
elasticity of Donut House with Folgers was 0.169 (p = 0.036). As expected, all these cross-price elasticities are positive (except one) 
with varying degrees of substitution effects. 

The brand-specific constants, the effect of other attributes, and their interactions with price are summarized in Table 6. We found 
no statistically significant differences for brand Donut House and Folgers versus the reference brand, Starbucks, but Green Mountain 
was more preferred (p < 0.01) to Starbucks and store brands somewhat less preferred (p = 0.06). Other attributes such as brewing 
method, blend, caffeine content, package size and their interactions with price impacted purchase choices. Our findings also show that the 
Keurig Vue Cup brewing method was much less preferred to the original Keurig K Cup, which was a painful lesson for Keurig. With 
respect to other standard coffee attributes, French Roast was less preferred to the reference House Blend, while it is statistically 
indistinguishable from other two blends, Columbian and Breakfast. Caffeine, on average, was preferred to decaffeinated coffee (p <
0.01), which is consistent with the market. Package quantities show an interesting pattern. The two intermediate sizes of 32 and 52 
pods were less preferred to the base pack size of 12, while the largest size of 72 pods was weakly the most preferred size, suggesting 
many consumers tended to desire either a small or very large number of pods. This is further emphasized, as price sensitivity increased 
as one moves from 12 to 32 to 52 pods. However, this relationship did not continue for the 72-pod size. 

We found household size and race influenced single-serve coffee choices. Single-serve coffee was consumed more often by one- 
member households than two member households (p < 0.01), which in turn consumed less single-serve coffee than three or four 
member households. These differences were not significant at the p < 0.05 level. Caucasians consumed more coffee pods than other 
races at the p < 0.05 level. There were some interesting (although insignificant) differences between men and women, Hispanics and 
non-Hispanics, households with and without children, and income groups. There were some minor differences in price sensitivity by 
age group. 

6.2. Summary results for canned tuna 

A complete set of parameter estimates for the canned tuna model is contained in Appendix B. The ten own-price effects for canned 
tuna were all negative, as expected. They were also highly significant (p < 0.001). It is important to note that these parameter estimates 

Table 6 
Single-serve coffee: Brand, other attributes, and interactions with price.   

Brand Coef. Robust Std. Err. z P>|z| 

Brands 
Base: Starbucks 

Donut house 0.156 0.171 0.91 0.363 
Folgers 0.137 0.190 0.72 0.471 
Green Mountain 0.462 0.181 2.56 0.010 
Other brand − 0.345 0.184 − 1.87 0.061 

Brewing Method 
Base: Keurig K Cup 

Keurig Vue Cup − 0.559 0.065 − 8.62 0.000 

Blend 
Base: House Blend 

Breakfast 0.021 0.052 0.41 0.683 
Columbian − 0.062 0.058 − 1.07 0.283 
French Roast − 0.129 0.057 − 2.26 0.024 

Organic + Flavor 
Base: Organic & Flavored 

Organic & Unflavored − 0.041 0.062 − 0.66 0.507 
Not Organic & Flavored − 0.099 0.057 − 1.73 0.084 
Not Organic & Unflavored 0.037 0.065 0.56 0.574 

Caffeinated Decaffeinated − 0.449 0.066 − 6.77 0.000 
Packsize 

Base:12 
32 − 0.111 0.073 − 1.51 0.132 
52 − 0.196 0.097 − 2.02 0.044 
72 0.206 0.112 1.83 0.067 

Brewing Method * LnPrice 
Base: Keurig Vue Cup 

Keurig K-Cup 0.131 0.089 1.47 0.142 

Blend * LnPrice 
Base: French Roast 

House 0.067 0.096 0.69 0.487 
Breakfast 0.032 0.100 0.32 0.750 
Columbian 0.025 0.105 0.24 0.810 

Organic * LnPrice 
Base: Non-Organic & Unflavored 

Organic & Flavored 0.110 0.102 1.09 0.277 
Organic & Unflavored − 0.026 0.109 − 0.24 0.809 
Not Organic & Flavored − 0.023 0.101 − 0.22 0.823 

Caffeinated*LnPrice 
Base: Decaf 

Caffeinated − 0.019 0.087 − 0.22 0.829 

Packsize *LnPrice 
Base: 72 

12 − 0.209 0.229 − 0.91 0.362 
32 − 0.470 0.194 − 2.42 0.016 
52 − 0.575 0.156 − 3.68 0.000  

R.T. Carson et al.                                                                                                                                                                                                      



Journal of Choice Modelling 42 (2022) 100343

14

reflect the relative differences between own-price elasticities of brands rather than the actual brand price elasticity because we allowed 
individual demographics to interact with an individual’s generic price elasticity. We estimated 90 cross-price effects. Similar to the 
way one specifies them in a “Mother Logit” model, they were included as covariates. Because the scale factor can be separately defined 
in a negative binomial model, the specification does not have the same theoretical issues raised by use of the Mother Logit specifi-
cation, where the utility of an alternative depends on both its own attributes and those of other alternatives in the choice set (Tim-
mermans et al., 1991). Of the cross-effects estimated, 74 were insignificant at the 0.05 level; they were generally positive and small. 
Sixteen of the cross-price effects were significant at the 0.05 level. Some were fairly sizeable, and, as a result, might play a potentially 
important role in pricing decisions. For example, the cross-price elasticity of a large size Starkist can of tuna with a large size Chicken of 
the Sea can of tuna was estimated to be 0.258 (p < 0.001). Also, there was an interesting price effect where the least expensive per 
ounce can in the choice set was associated with higher chosen quantities (conditional on all other covariates), which illustrates the 
possibility that VCEs could be used to model a wider range of pricing strategies. 

With respect to the brand-specific constants, differences between the three major tuna brands estimates were surprisingly small. 
Most of the action involves price elasticities. It is worth noting that this straightforward ability to disentangle brand-specific pa-
rameters and price elasticities is a major strength of the VCE approach. The results of estimating the effects of the other product at-
tributes indicated that smaller sizes were strongly preferred to larger sizes, tuna packed in water was greatly preferred to tuna packed 
in oil, Albacore tuna was weakly preferred to light tuna, and there was little difference in preference for solid versus chunk. The main 
stockout effect identified by the experimental design used involved water versus oil. The latter effect is asymmetric. Sales of the water 
variant increase if the other size of the same brand is oil. 

Larger households tended to pick larger numbers of cans. It is possible to tease out more subtle differences, conditional on con-
trolling for household size and the presence of children in a household did not significantly improve model fit. There were sizable 
regional differences with South and West panellists picking larger quantities than those in the Midwest and Northeast. Lower income 
households chose smaller quantities. Men and women did not differ in their choice behavior conditional on the other covariates. Nor 
did Caucasian and non-Caucasian households. However, Hispanics picked more cans. Price elasticities varied with income category, 
and as expected, lower income households were more price sensitive. They also varied with Census region, and Central and Eastern 
regions exhibited more price sensitivity than those in the West. An extensive set of random components for the brand indicators, own 
price elasticities, cross-price elasticities and the other canned tuna attributes help to characterize a considerable amount of predictable 
variation in respondent behavior. 

7. External validity: evidence from revealed preference (RP) canned tuna data 

Our sample for the SP experiment was drawn from IRI’s consumer panel. We also obtained information from IRI on the actual 
canned tuna purchases made by our respondents for a three-month period before our VCE was implemented and a three-month period 
afterwards. This potentially allows for a direct comparison between the SP data from our VCE and RP data from the IRI consumer panel 
and hence an assessment of the external validity of our SP approach. 

Such a comparison, however, is harder than it might first appear. This suggests caution in interpreting routine RP estimates made 
from similar datasets. Our SP data from the VCE is “clean” in the sense that all the choice sets are observed (even if nothing is pur-
chased), the attributes are standardized, price is exogenous because it is randomly assigned, and the underlying covariate matrix is 
well-behaved. In contrast, use of the RP data is problematic along each of these dimensions. First, zero purchase occasions were not 
well-defined nor clearly observable, even though these are of critical importance with a commodity like canned tuna that can be 
stockpiled. To make a direct apples-to-apples comparison, we can compare choice occasions where positive quantities were chosen in 
either the RP or SP data. Second, standardizing attribute levels are particularly important for the size and type of fluid tuna is packed 
in. We only used small and large sized cans packed in oil or water and for the RP data need to engage in the usual reconciling of a lot of 
small differences in SKU information. Third, an indicator for coupons/deals/promotions and their values were often missing for 
canned tuna. Visits to shelves of canned tuna at multiple locations and times suggested a large fraction of canned tuna SKUs on a shelf 
usually had signs indicating a sale or promotion. Consequently, we did not use these indicators in the IRI RP data and, in parallel, did 
not use SP choice alternatives with money-off coupons. 

There was an even larger problem, though, which makes any estimation of count data models using similar RP data highly 
problematic. We simply did not know what else was on the shelf when a consumer made their canned tuna choice(s). Given the large 
number of possible canned tuna configurations, many were missing, with no indication they were generally available to consumers. 
Again, visits to store shelves showed that “stockouts” involving a store’s canned tuna configuration, whereby some SKUs with shelf 
space, were not available for purchase because the shelf had not been restocked, were frequently observed. This makes it impossible to 
use the modelling strategy we implemented for the SP data, which heavily exploits the fact that respondents simultaneously see ten 
products for which they make volumetric choices and that we know all the relevant product attributes involved in making those 
choices. 
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Due to these data limitations, we fit the simplest model compatible with both the RP and SP data. Non-conformable observations 
were dropped in the manner described earlier. This model is a quasi-maximum likelihood truncated Poisson regression model which is 
a linear function of the log price per ounce. This estimation exercise provides an estimate of the own-price elasticity of − 0.340, with a 
95% confidence interval of [− 0.430, − 0.249] for the RP choices (N = 4399) and an own-price elasticity of − 0.373, with a 95% 
confidence interval of [− 0.438, − 0.308] for the SP choices (N = 13,128). The point estimates for these two own price elasticity es-
timates lie almost on top of each other and are statistically indistinguishable. This finding suggest that the SP choices are consistent 
with the RP choices made by IRI panelists with respect to information about the magnitude of own price elasticity. 

Examination of purchases at individual stores suggested that the three main brands of tuna are typically available. Adding brand 
indicators suggested indifference between Starkist (the omitted reference brand) and Bumble Bee for both the RP and SP data. For the 
RP data, the relative preference for Chicken of the Sea (vs. Starkist) was 8.1% while it was 9.5% using the SP observations. The 
differences between the two estimates are not statistically significant at any conventional level. We can examine the other attributes, 
but the estimated magnitude of preference parameters depended critically on what was available to be chosen. Under the assumption 
that retailers were more likely to offer SKUs with attribute levels that consumers prefer more, there should be agreement on the signs 
between the RP and SP models, which is what we found. Small size cans were preferred to large ones, packed in water was preferred to 
packed-in oil, Albacore was preferred to regular tuna, and solid preferred to chunky. The one place where there was a difference was 
when the SP data suggested a large coupon effect. The actual sales data did not suggest a large coupon effect, although this may be due 
to the unreliability of the coupon data in the RP dataset, noted earlier. 

8. Discussion and concluding remarks 

Volumetric choice experiments (VCE) are a natural extension of DCEs. They mirror many real-world decisions, such as the decisions 
of how many units of a good to buy or how many times to undertake an activity in a specified period. VCEs can be fit using count data 
models which have well-developed theoretical and statistical foundations. These models can help overcome several long-standing 
issues with binary and multinomial choice data. They can separately estimate the scale parameter(s) and its parameters are 
directly interpretable in terms of the conditional mean specification of the standard exponentiated Poisson process. A count data model 
is often able to better incorporate a richer specification of preference heterogeneity into the models because of its ability to separate the 
conditional mean and scale specifications. Further, count data models are easily adapted to handle a variety of issues, such as censoring 
and truncation, which are often important aspects of a data collection effort. 

VCEs can overcome many problems with non-experimental purchase data, such as avoiding endogeneity problems through 
randomization of attribute levels and clearly defined choice sets. By simultaneously offering a substantial number of distinct volu-
metric choices among competing products, a complete set of own-and cross-price elasticities can be estimated without the need to 
restrict the relationship between those elasticities. This can facilitate the examination of restrictions suggested by neoclassical and 
behavioral models and indicate that they are consistent with volumetric choice data. It has long been recognized that these elasticities 
are the key to making good pricing decisions (Shy, 2008). Development of experiment designs for volumetric choices are in their 
infancy. Useful lessons can be drawn from prior experience with DCEs and there is likely much to learn that is specific to VCEs. 

Making comparisons between the RP data, on actual purchases by our sample IRI panelists, and the behavior of those same panelists 
when faced with the choices offered in our VCE was less straight forward than it may have first appeared. Indeed, the effort we un-
dertook clearly suggests that simply expecting RP and SP estimates to be statistically equivalent if both are valid is naïve. Some issues 
involved in making the comparison revolve around the typical messiness of RP data. There is a proliferation of SKUs with minor 
differences and data fields for some attributes needed to make the desired comparisons are not reliably populated. However, the two 
largest problems are fundamental. First, only purchases of positive quantities are observed in the RP data. This can be dealt with using 
only positive purchase quantities combined with a truncated count model, albeit with potentially a substantial loss of information. 
More resolution could be gained if there is information on shopping trips where canned tuna was not purchased. Second, and largely 
uncorrectable, consumers, but not the researcher, know what else was on the shelf when an actual purchase was made. Casual visits to 
canned tuna shelves show frequent stockouts to be a dominant feature of the product category. In contrast, by construction, our VCE 
told us exactly what else was on the shelf, and indeed the role of such stockouts can be explicitly modelled by making them part of the 
experimental design. Nevertheless, with the weakest assumption that allowed identification of the own-price elasticity of canned tuna, 
we effectively found statistically equivalent estimates. Slightly stronger assumptions yielded similar estimates for preferences 
involving the three tuna brands usually available. Identification of preferences for other attributes that rely on whether a particular 
SKU, e.g., 12-ounce can of Bumble Bee chunky albacore tuna packed in oil, was actually on the shelf available for a consumer to 
purchase their desired quantity is considerably more problematic. With the assumption that retailers were more likely to offer products 
with attributes preferred by more consumers so that such products are on the shelf available for purchase, it suggests that the signs on 
different non-price attributes should be the same in the RP and SP data. This is confirmed in empirical estimates. 

Our results for the negative binomial regression model estimated with the data obtained using the VCE appear quite promising. The 
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set of own-price elasticities produced were reasonable in magnitude. One of the main messages from our results indicates that taking 
both differences in own-price elasticities and brand-specific constants into account provides a much richer picture about what is 
happening in the market than models that only allow for one price effect. For example, for 12oz cans of tuna, the own price elasticity 
for Starkist was almost 45% higher than the market leader, Chicken of the Sea, but only 10% higher for 6oz cans. Further, while store 
brands had price elasticities similar to those of Chicken of the Sea, the 6oz and 12oz store brand constants were much smaller than 
those for Chicken of the Sea. For single-serve coffee, Donut House and Folgers had higher own-price elasticity compared to Starbucks 
and Green Mountain, suggesting that most of the action is in the brand constants. Complete sets of cross-price elasticities were pro-
duced, and, with some minor exceptions, they were consistent with theoretical predictions. Generally, the cross-price effects were 
small in magnitude, but some are large enough to be important considerations in making pricing decisions. Other components of the 
model paint a rich picture of the underlying preference heterogeneity for different attributes and the heterogeneity in demographic 
drivers of demand. 

More generally, VCEs will be a useful addition to the toolkit of researchers studying choice behavior. Fundamentally, they focus on 
a different relationship than DCEs, namely how does the quantity of a particular good change in response to changes in attribute levels, 
rather than whether that good is chosen in response to changes in attribute levels. They force consideration of whether the action of 
interest occurs at one moment in time or over the course of some time period and whether interest lies in what brand is chosen or how 
many of each brand is chosen is the choice object of interest. They allow consumer characteristics to drive quantity decisions in a 
natural way, e.g., larger households buy more rolls of toilet paper, without needing to influence what brand. They can draw much from 
the DCE parents, but present opportunities to look at a new range of choice behavior and to re-examine some old questions in a new 
light. Along the way much will be learned about how to best collect and model VCE data. 
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Appendix A. Sample Choice Set of Single-Serve Coffee and Canned Tuna  

Fig. A1. Example Choice Set from the Single-Serve Coffee VCE.   
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Appendix B. Complete Set of Parameter Estimates from Canned Tuna VCE Model  

Fig. A2. Example Choice Set from the Canned Tuna VCE.   

Table B1 
Panel A - Own and Cross Price Effects  

Choice Coef. Robust Std. Err. z P>|z| [95% Conf. Interval] 

Own 
[1]Own_Starkist12oz − 3.052 0.181 − 16.84 0.000 − 3.407 − 2.697 
[2] Own_Starkist6oz − 2.976 0.160 − 18.64 0.000 − 3.289 − 2.663 
[3]Own_BumbleBee12oz − 2.826 0.148 − 19.06 0.000 − 3.117 − 2.535 
[4]Own_BumbleBee6oz − 3.067 0.204 − 15.05 0.000 − 3.466 − 2.667 
[5]Own_ChickenSea12oz − 2.111 0.131 − 16.17 0.000 − 2.367 − 1.855 
[6]Own_ChickenSea6oz − 2.718 0.137 − 19.84 0.000 − 2.987 − 2.450 
[7]Own_StoreBrand12oz − 2.167 0.145 − 14.97 0.000 − 2.451 − 1.883 
[8]Own_StoreBrand6oz − 2.616 0.139 − 18.78 0.000 − 2.889 − 2.343 
[9]Own_OtherBrand12oz − 2.831 0.139 − 20.32 0.000 − 3.104 − 2.558 
[10] Own_OtherBrand6oz − 2.920 0.151 − 19.28 0.000 − 3.216 − 2.623 
Cross 
Cross_Starkist6oz_Starkist12oz 0.176 0.155 1.13 0.257 − 0.128 0.479 
Cross_Starkist12oz_Starkist6z 0.045 0.051 0.88 0.377 − 0.055 0.146 
Cross_Starkist12oz_BumbleBee12oz 0.022 0.049 0.45 0.656 − 0.074 0.118 

(continued on next page) 
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Table B1 (continued ) 

Choice Coef. Robust Std. Err. z P>|z| [95% Conf. Interval] 

Cross_Starkist6oz_BumbleBee12oz 0.051 0.052 0.98 0.329 − 0.051 0.153 
Cross_Starkist12oz_BumbleBee6oz 0.040 0.136 0.29 0.769 − 0.227 0.307 
Cross_Starkist6oz_BumbleBee6oz 0.070 0.158 0.44 0.659 − 0.240 0.379 
Cross_Starkist12oz_ChickenSea12oz 0.257 0.062 4.14 0.000 0.135 0.379 
Cross_Starkist6oz_ChickenSea12oz − 0.019 0.054 − 0.35 0.724 − 0.125 0.087 
Cross_Starkist12oz_ChickenSea6oz 0.073 0.045 1.61 0.108 − 0.016 0.161 
Cross_Starkist6oz_ChickenSea6oz 0.040 0.050 0.81 0.419 − 0.058 0.139 
Cross_Starkist12oz_StoreBrand12oz 0.032 0.035 0.91 0.365 − 0.037 0.101 
Cross_Starkist6oz_StoreBrand12oz − 0.112 0.042 − 2.65 0.008 − 0.195 − 0.029 
Cross_Starkist12oz_StoreBrand6oz 0.046 0.030 1.5 0.133 − 0.014 0.105 
Cross_Starkist6oz_StoreBrand6oz − 0.022 0.048 − 0.47 0.640 − 0.116 0.071 
Cross_Starkist12oz_OtherBrand12oz 0.024 0.034 0.7 0.485 − 0.043 0.090 
Cross_Starkist6oz_OtherBrand12oz − 0.007 0.041 − 0.16 0.870 − 0.087 0.074 
Cross_Starkist12oz_OtherBrand6oz 0.016 0.032 0.49 0.621 − 0.046 0.077 
Cross_Starkist6oz_OtherBrand6oz − 0.055 0.040 − 1.36 0.172 − 0.133 0.024 
Cross_BumbleBee12oz_Starkist12oz 0.175 0.141 1.25 0.213 − 0.100 0.451 
Cross_BumbleBee6oz_Starkist12oz 0.213 0.154 1.38 0.167 − 0.089 0.515 
Cross_BumbleBee12oz_Starkist6oz 0.006 0.061 0.1 0.923 − 0.114 0.126 
Cross_BumbleBee6oz_Starkist6oz 0.142 0.050 2.84 0.005 0.044 0.240 
Cross_BumbleBee6oz_BumbleBee12oz 0.136 0.072 1.88 0.060 − 0.006 0.278 
Cross_BumbleBee12oz_BumbleBee6oz − 0.071 0.137 − 0.52 0.603 − 0.340 0.198 
Cross_BumbleBee12oz_ChickenSea12oz 0.196 0.044 4.43 0.000 0.109 0.283 
Cross_BumbleBee6oz_ChickenSea12oz 0.058 0.060 0.96 0.337 − 0.060 0.175 
Cross_BumbleBee12oz_ChickenSea6oz 0.114 0.087 1.3 0.194 − 0.058 0.285 
Cross_BumbleBee6oz_ChickenSea6oz 0.073 0.069 1.05 0.293 − 0.063 0.208 
Cross_BumbleBee12oz_StoreBrand12oz 0.033 0.041 0.8 0.421 − 0.047 0.113 
Cross_BumbleBee6oz_StoreBrand12oz − 0.021 0.042 − 0.5 0.619 − 0.102 0.061 

Cross_BumbleBee12oz_StoreBrand6oz 0.047 0.034 1.37 0.172 − 0.020 0.114 
Cross_BumbleBee6oz_StoreBrand6oz − 0.016 0.037 − 0.43 0.666 − 0.087 0.056 
Cross_BumbleBee12oz_OtherBrand12oz 0.099 0.035 2.79 0.005 0.030 0.169 
Cross_BumbleBee6oz_OtherBrand12oz 0.005 0.040 0.13 0.894 − 0.073 0.084 
Cross_BumbleBee12oz_OtherBrand6oz − 0.014 0.041 − 0.34 0.734 − 0.095 0.067 
Cross_BumbleBee6oz_OtherBrand6oz − 0.043 0.037 − 1.17 0.241 − 0.115 0.029 
Cross_ChickenSea12oz_Starkist12oz 0.126 0.131 0.96 0.339 − 0.132 0.383 
Cross_ChickenSea6oz_Starkist12oz 0.315 0.147 2.14 0.033 0.026 0.604 
Cross_ChickenSea12oz_Starkist6oz − 0.031 0.043 − 0.72 0.468 − 0.116 0.053 
Cross_ChickenSea6oz_Starkist6oz 0.025 0.041 0.61 0.540 − 0.055 0.104 
Cross_ChickenSea12oz_BumbleBee12oz 0.059 0.057 1.03 0.303 − 0.053 0.170 
Cross_ChickenSea6oz_BumbleBee12oz 0.081 0.059 1.37 0.171 − 0.035 0.197 
Cross_ChickenSea12oz_BumbleBee6oz 0.008 0.135 0.06 0.951 − 0.256 0.272 
Cross_ChickenSea6oz_BumbleBee6oz 0.075 0.143 0.53 0.598 − 0.205 0.355 
Cross_ChickenSea6oz_ChickenSea12oz 0.213 0.065 3.25 0.001 0.085 0.341 
Cross_ChickenSea12oz_ChickenSea6oz 0.141 0.062 2.29 0.022 0.020 0.262 
Cross_ChickenSea12oz_StoreBrand12oz 0.049 0.029 1.69 0.092 − 0.008 0.107 
Cross_ChickenSea6oz_StoreBrand12oz 0.037 0.035 1.05 0.293 − 0.032 0.106 
Cross_ChickenSea12oz_StoreBrand6oz 0.005 0.027 0.2 0.839 − 0.047 0.057 
Cross_ChickenSea6oz_StoreBrand6oz 0.050 0.043 1.17 0.242 − 0.034 0.133 
Cross_ChickenSea12oz_OtherBrand12oz 0.035 0.028 1.25 0.210 − 0.020 0.089 
Cross_ChickenSea6oz_OtherBrand12oz 0.070 0.042 1.67 0.094 − 0.012 0.151 
Cross_ChickenSea12oz_OtherBrand6oz − 0.017 0.027 − 0.63 0.527 − 0.070 0.036 
Cross_ChickenSea6oz_OtherBrand6oz 0.029 0.037 0.78 0.435 − 0.044 0.101 
Cross_StoreBrand12oz_Starkist12oz 0.313 0.125 2.5 0.012 0.068 0.558 
Cross_StoreBrand6oz_Starkist12oz 0.476 0.145 3.29 0.001 0.193 0.759 
Cross_StoreBrand12oz_Starkist6oz 0.039 0.059 0.66 0.507 − 0.076 0.154 
Cross_StoreBrand6oz_Starkist6oz 0.038 0.050 0.75 0.455 − 0.061 0.136 
Cross_StoreBrand12oz_BumbleBee12oz − 0.020 0.072 − 0.28 0.779 − 0.161 0.121 
Cross_StoreBrand6oz_BumbleBee12oz − 0.026 0.052 − 0.51 0.613 − 0.127 0.075 
Cross_StoreBrand12oz_BumbleBee6oz 0.079 0.147 0.53 0.593 − 0.210 0.367 
Cross_StoreBrand6oz_BumbleBee6oz 0.142 0.166 0.85 0.393 − 0.184 0.468 
Cross_StoreBrand12oz_ChickenSea12oz 0.134 0.048 2.78 0.005 0.040 0.228 
Cross_StoreBrand6oz_ChickenSea12oz 0.087 0.050 1.73 0.084 − 0.012 0.186 
Cross_StoreBrand12oz_ChickenSea6oz 0.111 0.073 1.53 0.126 − 0.031 0.254 
Cross_StoreBrand6oz_ChickenSea6oz 0.079 0.051 1.54 0.122 − 0.021 0.180 
Cross_StoreBrand6oz_StoreBrand12oz 0.157 0.050 3.11 0.002 0.058 0.256 
Cross_StoreBrand12oz_StoreBrand6oz − 0.067 0.045 − 1.5 0.134 − 0.155 0.021 
Cross_StoreBrand12oz_OtherBrand12oz 0.096 0.062 1.53 0.126 − 0.027 0.218 

Cross_StoreBrand6oz_OtherBrand12oz 0.149 0.054 2.77 0.006 0.044 0.254 
Cross_StoreBrand12oz_OtherBrand6oz − 0.007 0.064 − 0.11 0.910 − 0.132 0.117 
Cross_StoreBrand6oz_OtherBrand6oz − 0.084 0.048 − 1.74 0.082 − 0.179 0.011 
Cross_OtherBrand12oz_Starkist12oz 0.017 0.139 0.12 0.905 − 0.257 0.290 
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Table B1 (continued ) 

Choice Coef. Robust Std. Err. z P>|z| [95% Conf. Interval] 

Cross_OtherBrand6oz_Starkist12oz − 0.021 0.163 − 0.13 0.898 − 0.340 0.298 
Cross_OtherBrand12oz_Starkist6oz 0.002 0.051 0.05 0.964 − 0.098 0.102 
Cross_OtherBrand6oz_Starkist6oz − 0.072 0.061 − 1.19 0.234 − 0.191 0.047 
Cross_OtherBrand12oz_BumbleBee12oz 0.141 0.063 2.22 0.026 0.017 0.265 
Cross_OtherBrand6oz_BumbleBee12oz 0.036 0.057 0.63 0.528 − 0.076 0.148 
Cross_OtherBrand12oz_BumbleBee6oz 0.012 0.168 0.07 0.945 − 0.318 0.341 
Cross_OtherBrand6oz_BumbleBee6oz 0.017 0.198 0.09 0.931 − 0.372 0.406 
Cross_OtherBrand12oz_ChickenSea12oz 0.102 0.054 1.9 0.058 − 0.003 0.208 
Cross_OtherBrand6oz_ChickenSea12oz 0.065 0.048 1.35 0.176 − 0.029 0.159 
Cross_OtherBrand12oz_ChickenSea6oz 0.020 0.062 0.32 0.749 − 0.101 0.140 
Cross_OtherBrand6oz_ChickenSea6oz − 0.007 0.056 − 0.12 0.901 − 0.116 0.102 
Cross_OtherBrand12oz_StoreBrand12oz 0.129 0.053 2.42 0.016 0.024 0.233 
Cross_OtherBrand6oz_StoreBrand12oz 0.014 0.052 0.27 0.787 − 0.087 0.115 
Cross_OtherBrand12oz_StoreBrand6oz 0.036 0.047 0.78 0.435 − 0.055 0.128 
Cross_OtherBrand6oz_StoreBrand6oz 0.044 0.060 0.72 0.470 − 0.075 0.162 
Cross_OtherBrand6oz_OtherBrand12oz 0.180 0.067 2.69 0.007 0.049 0.312 
Cross_OtherBrand12oz_OtherBrand6oz 0.013 0.050 0.25 0.799 − 0.086 0.112 
CheapestOz 0.070 0.029 2.42 0.015 0.013 0.127  

Panel B: Brand, Attribute and Their Interaction with Price Effects 

Brand Coef. Robust Std. Err. z P>|z| [95% Conf. Interval] 

BumbleBee − 0.032 0.206 − 0.15 0.878 − 0.435 0.372 
ChickenSea 0.690 0.209 3.30 0.001 0.281 1.099 
StoreBrand − 1.234 0.239 − 5.17 0.000 − 1.702 − 0.767 
OtherBrand − 2.834 0.247 − 11.47 0.000 − 3.318 − 2.350 
hcoupon 0.433 0.036 12.05 0.000 0.363 0.504 
hcoupon*lcoupon       
0 0.000 (omitted)     
1 0.400 0.041 9.86 0.000 0.321 0.480 
SixOz 1.183 0.150 7.90 0.000 0.890 1.477 
Albacore 0.095 0.053 1.80 0.072 − 0.009 0.199 
Albacore*Own_lnPriceoz       
0 0.010 0.033 0.30 0.765 − 0.055 0.075 
1 0.000 (omitted)     
Water 3.569 0.093 38.44 0.000 3.387 3.751 
Water*Own_lnPriceoz       
0 0.001 0.041 0.03 0.977 − 0.079 0.081 
1 0.000 (omitted)     
Solid 0.016 0.059 0.27 0.787 − 0.100 0.132 
Solid*Own_lnPriceoz       
0 0.044 0.035 1.26 0.206 − 0.024 0.112 
1 0.000 (omitted)     
WatOil 0.069 0.019 3.66 0.000 0.032 0.106 
OilWat − 0.001 0.026 − 0.05 0.958 − 0.052 0.049  

Panel C: Demographics, Interaction with Price Effects, Scale Parameter 

Demographics Coef. Robust Std. Err. z P>|z| [95% Conf. Interval] 

Female − 0.036 0.050 − 0.73 0.468 − 0.133 0.061 
Female*Own_lnPriceoz       
0 − 0.004 0.042 − 0.09 0.926 − 0.087 0.079 
1 0.000 (omitted)     
White − 0.064 0.052 − 1.22 0.223 − 0.166 0.039 
White*Own_lnPriceoz       
0 − 0.045 0.045 − 1 0.317 − 0.133 0.043 
1 0.000 (omitted)     
Hispanic 0.108 0.077 1.41 0.158 − 0.042 0.259 
Hispanic*Own_lnPriceoz       
0 − 0.063 0.065 − 0.97 0.334 − 0.191 0.065 
1 0.000 (omitted)     
pres_child       
Yes (Children under 18 are in hh) 0.083 0.051 1.62 0.106 − 0.018 0.183 
pres_child*Own_lnPriceoz       
No (No children under age 18) 0.060 0.043 1.38 0.167 − 0.025 0.144 
Yes (Children under 18 are in hh) 0.000 (omitted)     
household 0.144 0.024 5.96 0.000 0.097 0.192 
c.household*Own_lnPriceoz − 0.008 0.020 − 0.38 0.707 − 0.047 0.032 
hhinc       
$25,000 to $49,999 per year 0.365 0.079 4.65 0.000 0.211 0.519 
$50,000 to $69,999 per year 0.609 0.082 7.41 0.000 0.448 0.770 
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Table B1 (continued ) 

Panel C: Demographics, Interaction with Price Effects, Scale Parameter 

Demographics Coef. Robust Std. Err. z P>|z| [95% Conf. Interval] 

$70,000 to $99,999 per year 0.486 0.083 5.82 0.000 0.322 0.649 
$100, 000 or Higher 0.757 0.083 9.14 0.000 0.595 0.920 
hhinc*Own_lnPriceoz       
Under 25,000 per year − 0.723 0.069 − 10.42 0.000 − 0.859 − 0.587 
$25,000 to $49,999 per year − 0.395 0.054 − 7.34 0.000 − 0.501 − 0.290 
$50,000 to $69,999 per year − 0.338 0.059 − 5.69 0.000 − 0.455 − 0.222 
$70,000 to $99,999 per year − 0.199 0.058 − 3.46 0.001 − 0.313 − 0.086 
$100, 000 or Higher 0.000 (omitted)     
census       
East 0.131 0.064 2.05 0.041 0.006 0.256 
South 0.641 0.058 11.13 0.000 0.528 0.753 
West 0.599 0.068 8.78 0.000 0.466 0.733 
census*Own_lnPriceoz       
Central − 0.335 0.058 − 5.81 0.000 − 0.448 − 0.222 
East − 0.151 0.058 − 2.59 0.010 − 0.265 − 0.037 
South − 0.013 0.053 − 0.25 0.801 − 0.116 0.090 
West 0.000 (omitted)     
Constant and ln(α)       
Constant − 10.465 0.273 − 38.31 0.000 − 11.001 − 9.930 
ln(α) − 3.804 1.269   − 6.292 − 1.317  

Panel D: Blocking Effects 

Block Coef. Robust Std. Err. z P>|z| [95% Conf. Interval] 

2 − 0.078 0.080 − 0.99 0.325 − 0.235 0.078 
3 0.330 0.020 16.54 0.000 0.291 0.369 
4 0.283 0.083 3.42 0.001 0.121 0.445 
5 0.467 0.106 4.38 0.000 0.258 0.675 
6 0.123 0.082 1.50 0.133 − 0.037 0.283 
7 0.052 0.105 0.49 0.621 − 0.154 0.258 
8 0.463 0.085 5.46 0.000 0.297 0.629 
9 0.464 0.107 4.35 0.000 0.255 0.674 
10 0.218 0.085 2.57 0.010 0.052 0.383 
11 0.259 0.106 2.44 0.015 0.051 0.467 
12 0.259 0.083 3.12 0.002 0.096 0.421 
13 0.210 0.020 10.44 0.000 0.170 0.249 
14 0.059 0.083 0.71 0.477 − 0.104 0.222 
15 0.232 0.018 12.63 0.000 0.196 0.268 
16 0.243 0.080 3.02 0.003 0.085 0.401 
Constant − 10.465 0.273 − 38.31 0.000 − 11.001 − 9.930 
ln(α) − 3.804 1.269   − 6.292 − 1.317  

Panel E: Random Effects - Variances and Covariances 

Responseid Coef. Robust Std. Err. z P>|z| [95% Conf. Interval] 

var(BumbleBee) 2.474 0.128   2.236 2.739 
var(ChickenSea) 1.652 0.103   1.461 1.868 
var(SBrand) 5.492 0.223   5.072 5.946 
var(OBrand) 7.214 0.338   6.581 7.908 
var(SixOz) 2.291 0.091   2.119 2.477 
var(Albacore) 0.853 0.048   0.764 0.953 
var(Water) 8.031 0.255   7.546 8.547 
var(Solid) 0.982 0.062   0.868 1.110 
var(own_lnPriceoz) 3.949 0.126   3.710 4.203 
var(_cons) 16.417 0.486   15.492 17.397 
cov(BumbleBee,ChickenSea) 1.170 0.088 13.37 0.000 0.999 1.342 
cov(BumbleBee,SBrand) 0.854 0.070 12.23 0.000 0.718 0.991 
cov(BumbleBee,OBrand) 1.412 0.084 16.81 0.000 1.248 1.577 
cov(BumbleBee,SixOz) − 0.144 0.073 − 1.99 0.047 − 0.287 − 0.002 
cov(BumbleBee,Albacore) 0.186 0.047 3.95 0.000 0.093 0.278 
cov(BumbleBee,Water) − 0.021 0.026 − 0.79 0.428 − 0.072 0.031 
cov(BumbleBee,Solid) 0.103 0.045 2.30 0.022 0.015 0.191 
cov(BumbleBee,own_lnPriceoz) 0.265 0.061 4.32 0.000 0.145 0.385 
cov(BumbleBee,_cons) − 0.679 0.102 − 6.67 0.000 − 0.878 − 0.479 
cov(ChickenSea,SBrand) 1.365 0.076 18.06 0.000 1.217 1.513 
cov(ChickenSea,OBrand) 1.536 0.090 17.05 0.000 1.360 1.713 
cov(ChickenSea,SixOz) 0.031 0.062 0.50 0.617 − 0.090 0.153 
cov(ChickenSea,Albacore) 0.073 0.039 1.87 0.062 − 0.004 0.149 
cov(ChickenSea,Water) 0.013 0.020 0.67 0.502 − 0.026 0.053 
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Table B1 (continued ) 

Panel E: Random Effects - Variances and Covariances 

Responseid Coef. Robust Std. Err. z P>|z| [95% Conf. Interval] 

cov(ChickenSea,Solid) − 0.055 0.034 − 1.64 0.102 − 0.121 0.011 
cov(ChickenSea,own_lnPriceoz) 0.176 0.055 3.18 0.001 0.068 0.285 
cov(ChickenSea,_cons) − 0.819 0.084 − 9.73 0.000 − 0.984 − 0.654 
cov(SBrand,OBrand) 5.159 0.202 25.55 0.000 4.764 5.555 
cov(SBrand,SixOz) 0.106 0.106 1.00 0.319 − 0.102 0.314 
cov(SBrand,Albacore) 0.040 0.063 0.64 0.521 − 0.083 0.164 
cov(SBrand,Water) 0.345 0.041 8.39 0.000 0.264 0.426 
cov(SBrand,Solid) − 0.018 0.065 − 0.28 0.777 − 0.146 0.109 
cov(SBrand,own_lnPriceoz) − 0.392 0.095 − 4.12 0.000 − 0.578 − 0.206 
cov(SBrand,_cons) − 2.088 0.154 − 13.56 0.000 − 2.389 − 1.786 
cov(OBrand,SixOz) 0.000 0.114 0.00 1.000 − 0.224 0.224 
cov(OBrand,Albacore) 0.074 0.070 1.05 0.292 − 0.064 0.212 
cov(OBrand,Water) − 0.064 0.043 − 1.50 0.134 − 0.147 0.020 
cov(OBrand,Solid) 0.218 0.071 3.05 0.002 0.078 0.358 
cov(OBrand,own_lnPriceoz) − 0.482 0.096 − 4.99 0.000 − 0.671 − 0.293 
cov(OBrand,_cons) − 1.963 0.174 − 11.25 0.000 − 2.305 − 1.621 
cov(SixOz,Albacore) 0.010 0.042 0.24 0.809 − 0.072 0.092 
cov(SixOz,Water) − 0.005 0.027 − 0.18 0.860 − 0.058 0.048 
cov(SixOz,Solid) − 0.031 0.044 − 0.69 0.490 − 0.117 0.056 
cov(SixOz,own_lnPriceoz) − 1.553 0.067 − 23.05 0.000 − 1.686 − 1.421 
cov(SixOz,_cons) − 2.753 0.126 − 21.79 0.000 − 3.001 − 2.506 
cov(Albacore,Water) 0.202 0.016 12.39 0.000 0.170 0.234 
cov(Albacore,Solid) 0.130 0.032 3.99 0.000 0.066 0.193 
cov(Albacore,own_lnPriceoz) 0.007 0.033 0.21 0.836 − 0.059 0.073 

cov(Albacore,_cons) − 0.674 0.066 − 10.21 0.000 − 0.804 − 0.545 
cov(Water,Solid) 0.097 0.089 1.09 0.276 − 0.078 0.272 
cov(Water,own_lnPriceoz) − 0.281 0.059 − 4.80 0.000 − 0.396 − 0.166 
cov(Water,_cons) − 7.002 0.243 − 28.84 0.000 − 7.478 − 6.526 
cov(Solid,own_lnPriceoz) − 0.104 0.039 − 2.70 0.007 − 0.180 − 0.028 
cov(Solid,_cons) − 0.691 0.105 − 6.57 0.000 − 0.897 − 0.485 
cov(own_lnPriceoz,_cons) 5.441 0.189 28.76 0.000 5.070 5.812   

R.T. Carson et al.                                                                                                                                                                                                      

http://refhub.elsevier.com/S1755-5345(22)00001-X/sref1
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref1
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref2
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref3
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref3
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref4
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref5
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref6
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref6
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref7
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref8
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref8
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref9
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref9
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref10
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref11
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref11
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref12
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref12
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref13
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref14
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref15
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref15
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref16
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref16
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref17
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref17
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref18
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref19
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref20
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref20
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref21
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref22
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref23


Journal of Choice Modelling 42 (2022) 100343

22

Hellerstein, D.M., Mendelsohn, R., 1993. A theoretical foundation for count data models. Am. J. Agric. Econ. 75 (3), 604–611. 
Herriges, J.A., Phaneuf, D.J., Tobias, J.L., 2008. Estimating demand systems when outcomes are correlated counts. J. Econom. 147 (2), 282–298. 
Hilbe, J.M., 2011. Negative Binomial Regression. Cambridge University press, New York.  
Howell, J.R., Allenby, G.M., 2019. Analyzing platforms goods using multiple-discrete continuous demand models. https://papers.ssrn.com/sol3/papers.cfm?abstract_ 

id=2024972. 
Liu, Q., Otter, T., Allenby, G.M., 2009. Measurement of own-and cross-price effects. In: Rao, V.R. (Ed.), Handbook of Pricing Research in Marketing. Edward Elgar, 

Northampton, MA, pp. 61–75. 
Louviere, J.J., Carson, R.T., Burgess, L., Street, D., Marley, A.A., 2013. Sequential preference questions factors influencing completion rates and response times using 

an online panel. J. Choice Modell. 8, 19–31. 
Louviere, J.J., Hensher, D.A., 1983. Using discrete choice models with experimental design data to forecast consumer demand for a unique cultural event. J. Consum. 

Res. 10 (3), 348–361. 
Louviere, J.J., Hensher, D.A., Swait, J.D., 2000. Stated Choice Methods: Analysis and Applications. Cambridge university press, New York.  
Louviere, J.J., Woodworth, G., 1983. Design and analysis of simulated consumer choice or allocation experiments: an approach based on aggregate data. J. Market. 

Res. 20 (4), 350–367. 
Lu, H., Hess, S., Daly, A., Rohr, C., 2017. Measuring the impact of alcohol multi-buy promotions on consumers’ purchase behaviour. J. Choice Modell. 24, 75–95. 
McFadden, D., 1974. Analysis of qualitative choice behavior. In: Zarembka, P. (Ed.), Frontiers in Econometrics. Academic Press, New York, pp. 105–142. 
Mitchell, R.C., Carson, R.T., 1989. Using Surveys to Value Public Goods: the Contingent Valuation Method. Johns Hopkins University press, Baltimore.  
Pudney, S., 1989. Modeling Individual Choice: the Econometrics of Corners, Kinks and Holes. Basil Blackwell, New York.  
Rossi, P.E., Allenby, G.M., McCulloch, R., 2005. Bayesian Statistics and Marketing. John Wiley, New York.  
Shy, O., 2008. How to Price: a Guide to Pricing Techniques and Yield Management. Cambridge University press, New York.  
StataCorp, 2019. Stata Statistical Software: Release 16. StataCorp LLC, College Station, TX.  
Timmermans, H., Borgers, A., Van der Waerden, P., 1991. Mother logit analysis of substitution effects in consumer shopping destination choice. J. Bus. Res. 23 (4), 

311–323. 
Train, K., 2009. Discrete Choice Methods with Simulation, second ed. Cambridge University press, New York.  
Von Haefen, R.H., Phaneuf, D.J., Parsons, G.R., 2004. Estimation and welfare analysis with large demand systems. J. Bus. Econ. Stat. 22 (2), 194–205. 
Wales, T., Woodland, A., 1983. Estimation of consumer demand systems with binding non-negativity constraints. J. Econom. 21 (3), 263–285. 
Wooldridge, J.M., 2010. Econometric Analysis of Cross Section and Panel Data, second ed. MIT press, Cambridge, MA.  

R.T. Carson et al.                                                                                                                                                                                                      

http://refhub.elsevier.com/S1755-5345(22)00001-X/sref24
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref25
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref26
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2024972
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2024972
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref28
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref28
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref29
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref29
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref30
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref30
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref31
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref32
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref32
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref33
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref34
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref35
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref36
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref37
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref38
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref39
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref40
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref40
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref41
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref42
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref43
http://refhub.elsevier.com/S1755-5345(22)00001-X/sref44

	Volumetric choice experiments (VCEs)
	1 Introduction
	2 A brief tour through relevant related literatures
	3 Econometric models for count data and some initial efforts at modelling VCE data
	4 Design of the volumetric choice experiments
	4.1 Design and implementation of simple ASD VCEs
	4.2 Product categories, their design attributes and designs
	4.2.1 Single serve-coffee design
	4.2.2 Canned tuna design


	5 Data, and model specification
	5.1 Data description
	5.2 Model specification

	6 Model results
	6.1 Summary results for single-serve coffee
	6.2 Summary results for canned tuna

	7 External validity: evidence from revealed preference (RP) canned tuna data
	8 Discussion and concluding remarks
	Author statement
	Acknowledgement
	Appendix A Sample Choice Set of Single-Serve Coffee and Canned Tuna
	Appendix B Complete Set of Parameter Estimates from Canned Tuna VCE Model

	References


