
Precautionary Heuristic Management 1

and Learning for Data-Poor Fisheries 2

Jason H. Murray and Richard T. Carson 3

1 Introduction 4

When making decisions, fisheries managers almost always assume that the param- 5

eters of the growth function are statistically identified and temporally stable. While 6

many data-rich fisheries have performed well in recent years, fisheries with little 7

to no data still account for more than 80% of global harvest (Costello et al., 2012). 8

When currently unassessed fisheries begin to accumulate data, there will no doubt be 9

attempts to manage these fisheries using standard statistical methods. If the growth 10

function’s parameters are not well identified in the available data, then there may 11

be fundamental problems that are unlikely to be solved by changes in institutions 12

and management objectives such as those suggested by the recent Pew Oceans 13

Commission and the US Commission on Oceans Policy. This paper looks at the 14

intrinsic difficulties involved in estimating fishery growth parameters, where the 15

parameters of a time-invariant function are poorly estimated from a short sample of 16

fishery and fishery-independent data. 17

The standard natural resource economics textbook treatments of how to optimally 18

manage a fishery implicitly assume that biologists have delivered to them the “true” 19

underlying parameters of a stable biological growth function (Gordon, 1954; Smith, 20

1969; Fisher, 1981; Berck & Perloff, 1984; Clark, 1990; Hartwick & Olewiler, 21

1998; Perman et al., 2003; Tietenberg & Lewis, 2016 ). Indeed, most economicAQ1 22
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analysis is done as if there is not even a random element to changes in fish stocks. 23

While this has allowed economists to concentrate on the “economic” part of the 24

management problem, serious issues arise if the underlying biological parameters 25

upon, which decisions are being made, are substantially wrong. Indeed, the basic 26

theme of this paper is that the estimates of the biological parameters will usually 27

be sufficiently far from their true values in such a manner that economists cannot 28

ignore the implications of this issue in providing policy advice. 29

To be sure, economists have not completely ignored the issue of uncertainty, 30

although “relative” neglect is probably a fair assessment. Much of this neglect stems 31

from a perceived division of labor between biologists and economists and a line of 32

work begun by Reed (1979). Reed’s work suggested that if one simply tacked on 33

a random term to the current period of growth, then the optimal policy was still 34

the deterministic constant escapement rule of Gordon (1954). The reason is that if 35

the error term was i.i.d. with an expected value of zero and observable, then it was 36

optimal to adjust to each shock by setting harvests to keep the stock size constant. 37

Clark and Kirkwood (1986) examine Reed’s framework under the more realistic 38

assumption that contemporaneously there is measurement error in the stock size. 39

Using a Bayesian framework, they find that a constant escapement rule is no longer 40

optimal and that optimal stock size can be smaller or larger than in Reed’s case. 41

Clark and Kirkwood maintain the assumption that the parameters of the growth 42

function are known.1 43

There has a been renewed interest in looking at uncertainty, some of which 44

is stimulated by a provocative biologically oriented paper by Roughgarden and 45

Smith (1996), which argued that the large amount of uncertainty in biological 46

modeling calls for the use of some variant of the precautionary principle in fisheries 47

management. This has led some economists, most notably Sethi et al. (2005), to 48

reexamine the uncertainty issue.2 Sethi et al. use three independent sources of 49

uncertainty, growth, stock size measurement, and harvest implementation, each 50

modeled as a contemporaneous error term. In this sense, Sethi et al. encompasses the 51

Reed, Clark, and Kirkwood results and the more formal parts of Roughgarden and 52

Smith. They find that uncertainty with respect to stock size measurement matters 53

the most. In particular, they find c onstant escapement rules that attempt to hold theAQ2 54

stock size at the level that maximizes sustainable yield and which often characterize 55

fisheries management, leading to substantially lower profit and a higher probability 56

1 Of course, there has been some work in the fisheries science literature on issues related to
parameter uncertainty with respect to the growth function parameters (e.g., Ludwig & Walters,
1981). What is surprising is that papers in this vein continue to point out large potential problems
but with surprisingly little impact on management practices.
2 Other recent papers looking at the role of uncertainty in fisheries management and the behavior
of fisherman include Singh et al. (2006) and Smith et al. (2008). More generally there is a growing
recognition that economists need to become more actively involved in modeling the complete
bioeconomic system. Smith (2008) points out that small changes in parameter values in nonlinear
fisheries can have a large influence on the underlying dynamics and that econometric understanding
of these implications is woefully inadequate.
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Precautionary Heuristic Management and Learning for Data-Poor Fisheries

that the fish stock being managed will go extinct, compared to management under 57

the adaptive policy they find to be optimal. 58

Sethi et al. (2005) suggest that uncertainty is more important than economists 59

previously thought but at its heart is still a stable deterministic growth function 60

with contemporaneous uncorrelated i.i.d. error terms added to the growth, stock 61

measurement, and harvest equations. There are two other interesting possibilities to 62

explore. The first is that the system is not stable over time in the sense of having clear 63

time series dynamics either in the deterministic (Carson et al., 2009) or stochastic 64

(Costello, 2000) part of the model. The second feature explored in this paper is the 65

possibility that the system is stable but the parameters being used for policy purposes 66

are fundamentally different from the true ones.3 67

The precautionary principle has many flavors but provides few specific decision 68

rules. One common practice is to reduce quotas to some fraction of MSY such that 69

good estimates of the growth function parameters still play a critical role.4 The other 70

common practice is to suggest setting aside marine protected areas to prevent a fish 71

stock from being wiped out (Lauck et al., 1998). But even when marine protected 72

areas are in place, the remaining fishing grounds are likely to require some form of 73

management tied to the biological state of the fishery to reduce the probability of 74

collapse. 75

Operational application of the precautionary principle faces many difficulties 76

(Sunstein, 2005; Randall, 2011). It should not simply always ban activities that 77

have associated risks that are poorly quantified and have the potential for high 78

levels of harm, as its proponents often believe. Meaningful trade-offs will need to 79

be made. Further, the decision-making framework should move toward the ordinary 80

risk management framework as better information about the originally difficult to 81

quantify risks becomes available. Grant and Quiggin (2013) provide a perspective 82

on the precautionary principle that emphasizes inductive reasoning about possible 83

risks which they term “bound awareness.” The procedure put forward in this paper 84

is in the spirit of their work in that it advances a heuristic decision rule that reduces 85

the possibility of “unfavorable surprises” while engaging in active experimentation 86

that progressively helps to improve the parameter estimates of the fisheries growth 87

model. 88

Section 2 of this paper will introduce the basic model and in-sample simulation 89

framework. Section 2 includes a discussion of some of the fisheries biology litera- 90

ture on estimating growth equations. This literature shows that even simple Gordon- 91

3 FAO (1995) in its discussion of the precautionary principle recognizes the data-poor situation we
seek to explore by noting that the resource manager should take “a very cautious approach to the
management of newly developing fisheries until sufficient data are available to assess the impact
of the fishery on the long-term sustainability of the resource.”
4 MSY as the management objective for a commercial fishery has been widely vilified but, as
Smith and Punt (2001) show, it keeps coming back in one form or another as the management
objective for a fishery. However, there is now a tendency to see MSY as an upper bound. Squires
and Vestergaard (2016) provide a comprehensive look at factors that can result in the maximum
economic yield (MEY) resource stock exceeding, equalling, or falling short of MSY.
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Shaefer logistic growth models typically produce poor estimates and that there has 92

been a tendency to move toward ever more complicated models that improve in- 93

sample – but typically not out-of-sample – forecasting ability. Economists have 94

paid surprisingly little attention to the technical estimation problems that biologists 95

have long faced. Various shades of macroeconomic modeling and forecasting issues 96

come to mind here (Hamilton, 1994). The fundamental problem is that errors are 97

propagated through a nonlinear dynamic system, with the issue being exacerbated 98

by a high degree of correlation between many variables, imperfect observability of 99

some key variables, and a relatively short time series available on which to estimate 100

model parameters. 101

While the parameters of the growth equation are technically identified, they are 102

often only weakly identified because of the typical lack of substantial variation 103

in the stock size and because of the tightly coupled relationship between the 104

growth rate and the carrying capacity. In samples of the size often used for the 105

purpose, parameter estimates may be almost arbitrarily far from their true values 106

and the property of asymptotic consistency of little practical import. This under 107

identification becomes even more troublesome if one allows various economic 108

factors associated with catch per unit of effort measurements to be correlated with 109

the unobserved random shocks, as seems likely. 110

Section 3 will describe estimation results for the parameter values used for 111

growth rate, carrying capacity and stock size in the fisheries example in Perman 112

et al. (2003), a popular graduate textbook. However, the results are not unique to 113

this specification. Our example shows a frightening degree of parameter dispersion; 114

even with almost 30 periods of data, some of the parameter estimates still display 115

considerable bias. 116

Section 3 continues by simulating the traditional management practice of using 117

estimated parameter values to determine catch. This is adaptive in the sense that 118

it uses estimates of maximum sustainable yield (MSY)5 updated with accumulated 119

harvest and stock data. This is done repeatedly with different draws on the vector of 120

random error. This allows us to trace out various outcome distributions. Specifically, 121

we focus on average catch and frequency of collapse. 122

Section 4 introduces a simple rule-of-thumb scheme that forsakes an effort at 123

formal estimation of the growth function parameters. This is similar to the direction 124

that some of the macroeconomic literature has taken when the true model parameters 125

are unknown (Brock et al., 2007). There is also an earlier strand in the agricultural 126

economics literature (Rausser & Hochman, 1979), which suggests that optimizing 127

decision rules coupled with highly nonlinear stochastic natural systems can be too 128

complicated to be practically implemented and that they may be dominated by 129

5 This is not the economic optimum but, rather, maximum sustainable yield. This is quite realistic
as a target for the manager, as many current US fishery management plans mandate that the stock
be maintained at or near maximum sustainable yield or a fraction thereof. Examples include the
Mid-Atlantic Flounder (Mid-Atlantic Fisheries Management Council, 1999), the Bering Sea and
Aleutian Islands Groundfish (Witherell, 1997), and the California White Seabass (Larson et al.,
2002).
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simple transparent rules that condition on a few observables. This rationale is also 130

reflected in the popular Taylor rule approach to monetary policy for central banks 131

(Orphanides, 2008). 132

Optimal stochastic control feedback rules may also be dominated by simple 133

conditioning rules simply because of an inability to properly specify and estimate 134

the system. Here, rather than assuming that the parameters of the growth function 135

are known or even knowable, we make the much weaker assumption than is typical 136

and assume only that the growth function is stable and is single-peaked. Our rule of 137

thumb looks at the changes in stock and catch over two periods to determine which 138

side of the peak one is on and takes a step toward it. Because there is a true stochastic 139

component to growth, it is always possible to take a step in the wrong direction. 140

Essentially, this is an adaptive gradient pursuit method, which is always on average 141

moving in the correct direction. We show that this precautionary rule of thumb can 142

lower the likelihood of collapse. When traditional management is combined with an 143

initial period of precautionary management, future estimates converge to the truth 144

more quickly and the likelihood of collapse is again lower. 145

The paper concludes in Sect. 5 with remarks on using precaution and statistics in 146

fisheries that are only beginning to receive funding for assessment. 147

2 Model and Simulation Framework 148

The standard textbook fisheries example is the Gordon-Schaefer model with a 149

logistic growth equation (Clark, 1990; Perman et al., 2003). The growth equation 150

is usually represented as: 151

G(Xt) = rXt (1–Xt/K) , (1)

where G(Xt) is the net natural growth in the fish stock at time t, Xt, r is the growth 152

rate, and K is the carrying capacity. Xt + 1 = Xt + G(Xt) – Ft, where Ft is the 153

quantity of fish harvested. A sustainable yield occurs where Ft = G(Xt). Maximizing 154

sustainable yield (MSY), which is the explicit or implicit objective written into 155

much fisheries legislation, occurs when the population is set at ½ K and is equal 156

to rK/4. Adding an economic actor such as a rent maximizing sole owner shifts 157

the MSY formulation of stock size a bit higher or lower to take account of how 158

costs depend on stock size (stock size larger than MSY and increasing as degree 159

of dependence increases) and the magnitude of the positive discount rate (stock 160

size smaller than MSY and decreasing as discount rate increases). The optimal 161

harvest size, though, is still typically driven to a large degree by the underlying 162

MSY biology, as these two factors often roughly offset each other. What is crucial 163

for the argument we advance is the dependence of current policies on knowing K 164

to set the optimal stock size and rK to set the optimal harvest. Similar dependence 165

exists for most of the other growth functions commonly used in making fisheries 166

management decisions, so the conceptual issues can all be well illustrated using the 167
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logistic function. Further, we note that, while the Gordon-Shaefer logistic growth 168

model can be criticized for not being realistic enough to fit empirical data, it is an 169

entirely different matter if we generate data as if that model were true and then try to 170

fit it. Now, the Gordon-Shaefer logistic model with stock assumed to be observable 171

represents the best case of having to fit only two parameters relative to the available 172

time dimension of the dataset.6 While our simple model has but a single species and 173

ignores spatial/temporal heterogeneity, the complications that arise from accounting 174

for these factors make estimation all the more difficult and consequently reinforce 175

the case for precaution when estimates are used to inform management. 176

The main problem is that K in the logistic growth equation is fundamentally 177

under-identified, unless r is known (and to a lesser degree vice versa for r unless K 178

is known). The main reason is that, unless there is substantial variation in Xt, then 179

observing Xt and G(Xt) only identifies the ratio r/K. Since fisheries managers often 180

try to hold Xt constant, which is optimal for MSY with i.i.d. environmental shocks to 181

the growth equation (Reed, 1979), little variation in Xt is generally observed. Under- 182

identification of K and r is not a new argument. Hilborn and Walters (1992) develop 183

it at some length, but the argument does not seem to have permeated thinking in 184

the economics literature on fisheries management. Instead, one sees explorations of 185

other sources of uncertainty. 186

This fundamental under-identification of the parameters of the growth equation 187

has a counterpart in the environmental valuation literature. There, it is well-known 188

that – because observed conditions do not vary sufficiently – one must induce 189

experimental variation (often in a stated preference context) in attributes such 190

as cost in order to statistically identify the parameters of interest with enough 191

precision to be useful for policy purposes. In the fisheries context, this would require 192

intentionally encouraging very large swings in G(Xt) by setting different harvest 193

levels in order to learn about r and K. This is unlikely to happen, as it would be 194

fought in either direction by different interest groups. 195

Hilborn and Walters (1992) note that, in many empirical fishing models, because 196

of the statistical imprecision in parameter estimates, K is set to the largest observed 197

stock size (usually estimated via sampling or some other method). This, of 198

course, technically resolves the statistical identification problem. However, the other 199

parameter estimates can now be grossly wrong as a consequence and, hence, may 200

result in policy prescriptions that are grossly wrong. In particular, assuming a value 201

of K, which is too small, will result in an estimate of r that is too large and a 202

recommendation to set Xt too low, which can be potentially disastrous. 203

Here, fishery data are simulated according to Eq. (1), including a uniformly 204

distributed catch variable, Ft, and a normally distributed additive disturbance term, 205

εt. This yields a linear estimating equation: Xt + 1 – Ft = rXt – (r/K)Xt
2 + εt. The 206

policy parameter of MSY = rK/4 is easily recovered from the linear regression 207

6 In practice, stock is at best observed with considerable measurement error. Zhang and Smith
(2011) examine statistical issues related to this problem in the context of the Gordon-Shaefer
model.
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results from the estimating equation. For notational compactness, define β1 and β2 208

as the respective coefficients from the linear regression. A consistent7 estimate of 209

the maximum of the growth curve is then given by: 210

MSYOLS = (β1 − 1)2

−4β2
(2)

This completes the model and in-sample simulation framework. The next section 211

describes the performance of a fishery managed using OLS estimates obtained 212

from simulated data. We then proceed to compare these statistical decisions under 213

identical draws from the error terms to the performance of heuristic management. 214

3 Statistical Management 215

Parameter estimates are calculated by simulating sample data according to the 216

model outlined in the previous section. The harvest data for the in-sample period 217

are a uniformly distributed fraction of the fish stock that can be thought of as 218

exogenously varying fishing effort. While many fishery datasets might exhibit a 219

“one-way trip” of depletion (Hilborn & Walters, 1992), this tends to “rig the 220

game” in the sense that parameter estimates are less precise, and probability of 221

collapse is higher. For this reason, the in-sample data simulations use uniform 222

fishing variability to give estimation the best chance of success. Figure 1 displays 223

average parameter estimates for each regression coefficient and MSY over 10,000 224

simulations for 200 periods each. The regression coefficients are consistent for 225

their true values and converge smoothly. The small-sample bias in the regression 226

coefficients leads to some problematic behavior in the estimates of the policy 227

variable; estimates of MSY are consistent but exhibit a much less regular approach 228

to the true value, with many spikes, some quite large, along the path to convergence. 229

This fits with empirical under-identification as described above (Kenny, 1979). 230

The simulations above confirm that estimates implied by Eq. (2) are consistent. 231

Using these estimates for policy is a different matter. Figure 2 demonstrates the 232

performance of a statistical management regime that allows harvesting of the 233

estimated value for MSY beginning at period 30.8 When statistical management 234

begins, catches immediately increase and the rate of collapse (stock reaching zero) 235

increases, rising to nearly 90% by the 100th period. While there may exist discount 236

rates for which this catch profile is supported as optimal, the fact remains that 237

7 This follows from Slutsky’s theorem (Wooldridge, 2010) and is confirmed by simulation results
below.
8 30 years is an unusually large sample to have both catch and stock data. For example, Erisman
et al. (2011) made use of some of the largest such datasets in Southern California, and the largest
sample in this paper contained 30 years.
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Fig. 1 Consistency of estimates

most fishery management legislation contains a mandate to prevent collapse of 238

the resource. Statistical management, even for a correctly specified model with 239

unrealistically high-quality data, performs poorly. 240

4 Heuristic Precaution 241

What is the manager to do in the face of unreliable estimates of MSY in the given 242

sample? A first thought might be to introduce a reduction to MSY, but it is not 243

obvious how to make such a reduction that is not an arbitrary “fudge factor.” This 244

section presents a modest suggestion: discard all but recent data. A “rule-of-thumb” 245

management program using only the most recent three periods’ stock and catch data 246
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Fig. 2 Statistical management

can perform a rudimentary gradient search for the stock which yields MSY. The 247

motivation for the gradient search is that much can be learned from three periods 248

about the current position of the stock. Presume only that G(Xt) has a unique global 249

maximum value greater than zero and G(Xt) = 0 for Xt = 0 and Xt = 0 for some 250

unknown K > 0. The goal is to set catch levels to send the stock level to that which 251

maximizes the growth function. If the noise term is reasonably small and stock and 252

catch values are known, then G(Xt) = (Xt – 1 – Xt) – Yt – 1, approximately. Therefore, 253

at time period s and given data: {Ys, Ys – 1, Ys – 2, Xs, Xs – 1, Xs – 2}, we can rewrite to 254

obtain our estimates of the realized growth in the previous two periods: 255

G(Xs – 1) = (Xs – Xs – 1) – Ys – 1 and G(Xs – 2) = (Xs – 1 – Xs – 2) – Ys – 2. We now 256

have four cases, two of which are informative: 257

1. Xs – 1 > Xs and G(Xs – 1) > G(Xs): This implies that the single peak occurs at 258

some X greater than Xs. 259

2. Xs – 1 < Xs and G(Xs – 1) < G(Xs): This is not enough information to determine 260

the location of the peak. 261

3. Xs – 1 < Xs and G(Xs – 1) > G(Xs): This implies that the single peak occurs at 262

some X greater than Xs. 263

4. Xs – 1 > Xs and G(Xs – 1) < G(Xs): This is not enough information to determine 264

the location of the peak. 265
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G(Xs)

G(Xs)

G(Xs–1)

Xs–1 Xs–1Xs Xs

Xs–1 Xs–1Xs Xs

G(Xs–1)

G(Xs)

G(Xs–1)

G(Xs)

G(Xs–1)

CASE 1: Xs–1 > Xs and G(Xs–1) > G(Xs) CASE 2: Xs–1 < Xs and G(Xs–1) < G(Xs)

CASE 3: Xs–1 < Xs and G(Xs–1) > G(Xs) CASE 4: Xs–1 > Xs and G(Xs–1) < G(Xs)

Fig. 3 The four possibilities for 2 points for any single-peaked growth curve

Three realizations of the stock and growth values are sufficient to describe two 266

values lying on the underlying growth function. Figure 3 summarizes these four 267

cases outlined above. 268

The rule-of-thumb decision rule makes use of the implications of each case 269

above. In the informative cases 1 and 2, the rule increases or decreases the harvest 270

by a factor, γ , assigned arbitrarily to be.5 in simulations below. To summarize, the 271

rule of thumb sets period s catch as follows for each of the four cases: 272

1. Set Ys = (1 − γ )Ys−1 273

2. Set Ys = Ys−1 274

3. Set Ys = (1 + γ )Ys−1 275

4. Set Ys = Ys−1 276

Any precautionary preference would be concerned with the probability of stock 277

collapse. Many management plans contain statements mandating a maintenance of 278

stocks at or near that which yields MSY, coupled with a mandate to prevent the stock 279

from crashing and to prevent the stock from dropping below some threshold as in 280

Lee (2003). The rule of thumb decreases the probability of stock collapse. 281

Figures 4, 5, 6, and 7 present averages of 100,000 trials for 100 periods for 282

managing a fishery under different regimes. Figure 4 shows the baseline of OLS 283

statistical management beginning at period 15. Figures 5 and 6 show the results 284

of preceding OLS statistical management by 15 and 30 years (respectively) of 285

rule-of-thumb (gradient) management. Figure 7 shows the results of using our rule- 286

of-thumb heuristic approach for the entire 85-year period of active management 287

displayed. In every case, statistical management is dominated by our simple 288

Richard
Cross-Out

Richard
Inserted Text
to be 5 in



Precautionary Heuristic Management and Learning for Data-Poor Fisheries

Fig. 4 Pure statistical management with delay

heuristic rule. Most strikingly, our rule-of-thumb gradient approach maintains high 289

average catch levels; at the same time, the longer it is used relative to the standard 290

OLS statistical management regime, the lower the probability of a fishery collapse. 291

The results suggest that it is unlikely that small samples of fishery independent 292

data contain much payoff-relevant information. The rule of thumb outperforms 293

decisions based on the entire sample. It is important to remember that OLS is 294

correctly specified for this model, and the disturbance terms are normally distributed 295

and i.i.d., a rosy situation indeed. The model is simple, but any change to the model 296

to increase realism will only make the bio-econometrician’s task more difficult, as 297

there is no more realistic growth model with fewer than two parameters. 298

5 Concluding Remarks 299

Fisheries in the developing world are plagued by myriad difficulties. Property rights 300

are insecure. Ecosystems are degraded. Data are missing and, of necessity, the 301

parameter estimates upon which fisheries management decisions are made must be 302

wrong. Statistical estimates are never the true parameter values. Economists have 303

largely ignored this issue. Indeed, most theoretical and applied work has taken the 304
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Fig. 5 Mixed management, short horizon

parameter estimates from biologists and treated them as truth. When economists 305

have considered uncertainty, it is typically in the form of random environmental 306

shocks to recruitment from the growth equation. In the simplest cases, i.i.d. error 307

terms allow the appropriate adjustment in each time period. Sethi et al. (2005) have 308

shown that other forms of error, such those resulting from having to measure stock 309

size, can create much more substantial problems for managing fisheries. Our work 310

extends the list of problems by emphasizing statistical uncertainty in the parameter 311

estimates when only relatively short time series data are available – a situation that 312

characterizes many fisheries. 313

In the simple Gordon-Shaefer model, measurement error in the main biological 314

parameters – growth rate, carrying capacity, and maximum sustainable yield – 315

tends to be fairly large. In part that is because the regression model has two 316

covariates, stock size and stock size squared, which tend to be highly correlated. 317

This high correlation is made much worse by the usual management practice of 318

trying to maintain stock size at a specific level. The typical error in the parameter 319

estimates increases rapidly in the underlying unexplained variance. More complex 320

(and realistic) models, either in terms of more parameters or more complex error 321

structures, are likely to create even worse statistical properties for the estimates used. 322

This paper gives the game away to the bio-econometrician; estimation is made as 323

simple as possible. The functional form is the one used to generate the data; the error 324

component is generated independently and has low variance. Further, both catch and 325
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Fig. 6 Mixed management, long horizon

stock are assumed observable. This paper shows that there is little gain (if any) to 326

using the full, but still quite small, sample typically available for most fisheries. 327

Throwing out 90% of the sample and using a heuristic are better. 328

Increasing the number of parameters will almost surely make the problem worse. 329

Some readers may argue that real stock assessments rely on fishery-independent 330

data and that our results only reinforce the importance of that source of information. 331

Fisheries are multidimensional dynamic systems and data on variables beyond 332

catch and stock levels (such as length-frequency and length-at-age) may improve 333

estimates, but only if the out-of-sample predictive information they provide grows at 334

a rate substantially larger than the number of extra parameters that must be fit. That 335

is because the fundamental nature of the problem is the propagation of measurement 336

error in the parameters in a nonlinear optimization model. 337

One of the immediate results of our framework is that under- or overestimating 338

the allowable catch by the same amount does not result in symmetric errors. 339

Overestimation leads to higher catches now and, of necessity, fewer fish later, 340

including substantially increasing the risk that the fishery collapses. For any given 341

over- and underestimate of the allowable catch, there is typically a discount rate 342

that would make one indifferent. Environmentalists and fishers, however, are likely 343

to disagree on the discount rate. The social discount rate is also likely to be lower 344

than the private discount rate. This discount rate story as a source of conflict is not 345

new, but what is new is the interaction between the level of parameter uncertainty 346
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Fig. 7 Pure heuristic management with delay

and the discount rate. Uncertainty amplifies the policy variance implied by differing 347

discount rates. Reducing the level of uncertainty can be Pareto-improving for all 348

groups and can reduce (but not eliminate) the degree of conflict. This insight may 349

be useful in implementing more practical variants of the precautionary principle. 350

Given the poor performance of the standard statistical estimates of the relevant 351

biological parameters and the fact that either over- or underestimation of allowable 352

catch can reduce welfare, it is useful to ask if there is any way to improve the 353

situation. Because the problem is essentially one of high collinearity and small 354

sample size, one possibility is to limit the range of either the carrying capacity 355

or growth rate parameters. Interesting opportunities for doing this appear to be 356

available, particularly with the recent biological work on estimating historical 357

population stocks before large-scale commercial fishing (Jackson et al., 2001). A 358

Bayesian framework (Gelman et al., 2003; Walters & Ludwig, 1994) is natural. 359

Pinning down a reasonable narrow range for one of these parameters could add a 360

great deal of stability to the estimate of allowable catch. 361

Our framework suggests a different way of dealing with the issue. It may be 362

generally applicable to situations where there is considerable uncertainty about the 363

underlying biological growth function, other than the assumption that it is single 364

peaked. Our rule-of-thumb decision simply tests which side of the peak one is likely 365
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to be on, using very limited information, and then pursues it using a conservative 366

step size. Since there are stochastic shocks, it is always possible to move in the 367

wrong direction on any particular step. On average, though, one moves in the 368

correct direction. This simple approach works reasonably well in the sense of being 369

fairly close to using the growth function parameters estimated in the standard way 370

when the parametric modeling being fit was the correct one. Further, there are 371

clearly more sophisticated adaptive gradient pursuit methods that could be explored 372

than the simple rule-of-thumb approach in this paper; such methods may be more 373

statistically efficient while maintaining a large degree of robustness. Another logical 374

step would be to look at the performance of different adaptive gradient pursuit 375

methods when the underlying parametric model being fit was the incorrect one, 376

so that there was both specification and parameter estimation error, as is likely 377

to be the case in realistic empirical applications. Our current framework shows 378

promise for cautious adaptive management as a path to implementing management 379

guided by a precautionary principle. Finally, we have assumed the usual biological 380

management strategy of setting an overall catch limit. It would be useful to see how 381

our proposed method interacts with the use of landing fees (Weitzman, 2002) or 382

individual transferable quotas (Squires et al., 1995).AQ3 383
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