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ABSTRACT
Discrete choice experiments (DCEs) are widely used in many areas of
applied social science research. The results of DCEs depend on the
particular experimental design for the identification of the key para-
meters of interest and the statistical efficiency with which those
parameters are estimated. Work on experimental designs for DCEs
has almost always assumed that the particular design one uses does
not influence the nature of the responses to the choice tasks other
than via the precision with which parameters are estimated. We
examine this assumption by testing whether particular experimental
designs influence the probability that a separating hyperplane exists
that perfectly predicts the observed choices at the individual level in
four DCE data sets. Our empirical results suggest that the particular
statistical design used can influence the nature of the choice
responses obtained.
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1. Introduction

Discrete choice experiments (DCEs) are widely used in many applied fields in the social
sciences, including economics, health policy, marketing, political science, psychology, and
transport (Louviere, Hensher, and Swait 2000). They are most often used in a survey
context where participants provide stated preference information in the form of a discrete
choice between available options that differ on the levels of one or more attributes that are
assigned according to an experimental design. Revealed preference versions of DCEs are
often used in field experiments and test markets. DCEs have proven especially popular in
computer-assisted interviewing, in Internet surveys, and in test markets run online, as they
allow quite complex experimental designs to be easily used.

Experimental designs used in a DCE are important because they determine what
parameters are statistically identified and the efficiency with which the statistics of interest
can be estimated. Two jumping-off points for thinking about experimental design for
DCEs are (1) dose-response experiments in the biometrics literature (Finney 1978),
because the simplest DCEs vary only one treatment variable, and (2) the literature on
industrial experiments (Box, Hunter, and Hunter 2005), as most DCEs involve varying
multiple factors. Because many readers will be unfamiliar with experimental design
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applied to DCEs, we provide an extensive literature review. We pay particular attention to
how the features of a DCE can influence potential responses to it.

Statistics of interest from a DCE often involve ratios of estimated model parameters
because these represent marginal trade-offs, such as marginal willingness to pay (WTP) for
an increase in a factor, which can be estimated if one of the model parameters represents
the cost of an option. Efficiency is important for the usual reasons, that is, obtaining a
tight confidence interval for a given sample size or minimizing the number of observations
needed to obtain a given confidence interval. However, this article focuses on a different
issue, namely, the possibility that the particular experimental design used influences the
estimated statistics of interest in ways unrelated to the usual statistical concerns of
identification and efficiency. Indeed, such design-related behavioral effects have been
observed for different aspects of DCEs, such as the number of attributes or the number
of choice options. We focus on an indicator of individual behavior: Is it possible to
identify a separating hyperplane that perfectly predicts observed responses? Such a hyper-
plane is usually regarded as undesirable at the aggregate level as it suggests the response
from the population of interest is perfectly predictable and therefore lacks the random
component that underlies the random utility models (Hensher, Rose, and Greene 2005;
McFadden 1974) typically fitted to choice data from DCEs.

The separation measure we propose has a more complex interpretation at the indivi-
dual level. The standard economic formulation of a random utility model assumes that
behavior at the individual level is deterministic. Our indicator provides an upper bound
estimate on the fraction of the sample for whom this assumption cannot be ruled out,
assuming away decisions under uncertainty. Our indicator does not depend on a parti-
cular distributional assumption for the random component, but it does depend on the
particular experimental design used, and this dependence can be used to explore the ways
in which different experimental designs interact with behavior.

2. DCE experimental design literature review

Choice scenarios (known as “choice sets”) presented in DCEs represent a finite set of
options defined on a number of attribute dimensions, the levels of which are system-
atically varied by the associated design. Experimental participants are asked to indicate
their preferred option in each choice set. Conceptually, an experimental design is simply a
matrix of values used to determine what goes where in a DCE. These values can be
numbers or labels, depending on how the analyst chooses to communicate the informa-
tion in the experiment to participants. Figure 1, from Vincent et al. (2014), displays one
choice task an individual was asked to complete about policy options for protecting a large
tract of tropical rainforest in Malaysia. A review of the literature (Louviere, Pihlens, and
Carson 2011) suggests little consensus about specific experimental design approaches
appropriate for DCE studies; hence, multiple approaches appear in the literature.

The primary focus of research into experimental design theory related to DCEs has
tended to be on producing designs deemed more statistically efficient, where statistical
efficiency is related to the expected standard errors that a design will produce. All else
being equal, designs expected to produce smaller standard errors are said to be more
statistically efficient (Rose and Bliemer 2009). Thus, a direct link exists between the
statistical efficiency of a design and the sample size requirements of DCE studies; that
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is, more efficient designs should produce the same t-ratios as less efficient designs, but
with smaller samples. Alternatively, they should produce larger t-ratios than less efficient
designs given the same sample size.

DCE data typically are analyzed using nonlinear models such as the conditional multi-
nomial logit and mixed multinomial logit models (Hensher, Rose, and Greene 2005;
McFadden 1974). In turn, this implies that the efficiency of a design depends on the
unknown parameter vector (Atkinson and Haines 1996). Given that the true parameter
vector is unknown at the stage at which the design is generated, analysts must make
assumptions about specific values for the parameters. By assuming specific parameter
values associated with a given design matrix X, it is possible to calculate the expected
utilities for each of the choice options. Once known, these expected utilities can be used to
calculate the expected choice probabilities. Next, given knowledge of the attribute levels
(the design), expected parameter values, and the resultant choice probabilities, it is a
straightforward exercise to calculate the Fisher information matrix, IN’ which is computed
as the Hessian matrix of negative expected second derivatives of the log-likelihood
function of the model to be estimated, where N is the number of observed choices
(Train 2009). The asymptotic variance–covariance (AVC) matrix, ΩN ; which is the inverse
of the Fisher information matrix, then can be determined and the expected standard
errors derived. By manipulating the attribute levels of the options for the known
(assumed) parameter values, analysts can minimize some meaningful function of the
elements in the AVC matrix (such as the trace or determinant), which generally implies
lower standard errors, and hence greater reliability in the estimates for a fixed sample size.

Three different approaches to the problem of having to assume some prior information
about parameter values have been developed. The first is to assume a priori precise
knowledge of the parameter estimates, leading to what are termed locally optimal designs

Figure 1. A single choice task from Vincent et al. (2014).
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(so called because they are optimized for these specific prior parameter values). They
quickly can lose efficiency if the true parameter values differ from those assumed in design
generation, such as a common assumption of zero prior parameter values. In this case,
linear experimental design theory can be used to generate designs that will be orthogonal
in the attributes (e.g., Anderson and Wiley 1992; Kuhfeld, Tobias, and Garratt 1994; Lazari
and Anderson 1994; Street, Bunch, and Moore 2001; Street and Burgess 2007).
Alternatively, some researchers generated locally optimal designs under non-zero prior
parameter values (e.g., Carlsson and Martinsson 2003; Huber and Zwerina 1996); in this
case, nonorthogonal designs tend to be more statistically efficient than orthogonal designs.

A second, more recent, approach tries to integrate uncertainty about assumed para-
meter values with Bayesian design methods (e.g., Chaloner and Verdinelli 1995). First
applied to DCEs by Sándor and Wedel (2001), the Bayesian approach involves assuming
prior parameter distributions instead of specific fixed values, and examining the AVC
matrix generated over draws from these distributions. This design approach has been
shown to produce Bayesian optimal designs that are less efficient than correctly specified
locally optimal designs but more robust to prior parameter misspecification (e.g., Sándor
and Wedel 2001). As with locally optimal designs assuming nonzero prior parameter
values, nonorthogonal designs tend to be more statistically efficient for this case (e.g.,
Kessels et al. 2009). Ongoing research for this class of designs studies how to best
represent Bayesian prior parameter distributions (e.g., Bliemer, Rose, and Hess 2008;
Goegebeur, Goos, and Vandebroek 2007; Yu, Goos, and Vandebroek 2008, 2010).

A third approach assumes priors can be sequentially updated by estimating the para-
meters on progressively larger samples during the data collection process. For each
participant (or subsample of participants), a new design can be generated based on the
currently set local or Bayesian priors. This process was proposed by Kanninen (2002),
while Bliemer and Rose (2010) and Yu, Goos, and Vandebroek (2011) showed that such
sequentially optimal designs can improve the efficiency of the design significantly but
require more complex data collection methods and analysis.

Aside from prior parameter estimates, different assumptions are required to generate
an experimental design. Each experimental design is optimized based on the AVC matrix
of a specific model, and different models produce different AVC matrices, even when the
design is fixed. For example, assuming different functional forms (e.g., main effects versus
main effects and first-order interactions), different assumptions about the distribution of
parameters (e.g., fixed versus random parameters), or the distribution of the error
component all produce different optimal designs (e.g., Tudela and Rebolledo 2006).
There also are different statistical criteria (e.g., C-optimality, D-optimality, G-optimality)
that effectively trade off a tight confidence interval around one or a small number of
statistics of interest versus an ability to look at a wide range of effects with reasonable
precision. This implies that analysts must specify the particular model they intended to
estimate and the statistic(s) of interest before generating a design. The AVC matrix also is
influenced by the type of coding used when generating a design. For example, dummy or
effects codes produce different AVC matrices than linear or other coding structures.
Finally, analysts sometimes impose constraints on attributes, attribute levels, and combi-
nations of levels that may influence a design, such as whether a design is balanced in the
levels, orthogonal, or restrictions in the appearance of certain attribute-level combinations
such that choice options with more desirable attribute levels do not appear at prices lower
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than competing options with less desirable levels. All of these considerations can impact
the final design generated.

While the DCE literature often tends to describe different design paradigms, we view
this as one overarching design methodology with analysts making different assumptions
that take them in different directions as to what they consider optimal designs. For
example, designs generated using the Street and Burgess (2007) approach are often viewed
as a different design paradigm. However, it is straightforward to show that Street and
Burgess designs are locally optimal designs generated under the assumptions of zero
priors, a conditional multinomial logit model, and orthonormal orthogonal attribute-
level coding. Thus, we view the Street and Burgess approach as a way to produce designs
optimized for a very specific set of assumptions, not a separate class of designs.

The purpose of this article is to examine whether designs generated under different
assumptions can influence behavioral outcomes from DCEs. It is well known and long
established in psychology that features of experimental tasks can influence outcomes (a
phenomenon known as demand characteristics or demand-induced effects; e.g., Orne
1962, 1969). However, this has only received attention in the DCE literature recently,
with most attention focused on DCE design characteristics, such as the number of
options, the number of attributes, or the number of choice sets administered to each
person (e.g., Beck, Kjaer, and Lauridsen 2011; Caussade et al. 2005; Hensher, Stopher,
and Louviere 2001). The latter work (examined in more detail in the following)
suggests the possibility of behavioral effects in response to choice tasks; thus, we
focus on another major aspect of DCE design generation, namely, whether designs
generated under different assumptions can influence the outcomes of DCEs beyond
simply influencing parameter estimate precision. We study this by looking at a measure
of perfect predictability of choices at the individual level. This measure couples the
notion of how tightly a particular experimental design identifies the space in which the
choice model’s parameter vector lies and the influence of the particular experimental
design on the estimated error component.

3. Experiments looking at influence of DCE features on choices

There is a small literature on the influence of various features of DCEs on choice behavior
relevant to our work on the role of particular DCE design features on choice behavior. We
begin by noting that if people make choices consistent with the basic rational economic
model typically assumed in DCE applications and analysts know the correct model of
choice behavior up to a small vector of parameters that can be estimated from the data,
neither the features of a DCE nor the particular experimental design would influence
choice behavior. Furthermore, work in economic applications of DCEs often adopts the
strong assumption (Manski 1977) that error components reflect fixed factors not observed
by analysts and lacks a true random component. It is unlikely that these assumptions are
true in practice. For example, people face time constraints that make effort costly,
suggesting satisficing behavior (Krosnick 1991), where reasonably good options are chosen
but the best choice is occasionally overlooked, and a specific parametric functional form
for modeling choices is unknown. At the very least, the features of a particular choice task
seem to robustly influence estimates of the error components of choice models once
observations on more than one choice are available.
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Features of DCEs that have been studied regarding their influence on choice behavior
are (a) the number of choice sets observed from the same individual, (b) the number of
choice options in a choice set, (c) including a status quo (i.e., an option with fixed
attribute levels that describes the only current option) and/or no action/purchase option,
(d) the number of attributes used to describe each option, (e) the order in which attributes
appear, and (f) the number of levels of each attribute. Empirical tests suggest no or small
effects for some of these design features, but there is fairly consistent evidence that other
features can have a substantial influence on how choice questions are answered, as we now
discuss.

The number of choice sets each individual answers is important from a number of
perspectives, including survey cost and analysts’ ability to consider different sources of
variability between parameters at the individual level. Work on numbers of choice sets has
found no effect or small (precisely estimated) effects; also, effects found so far tend to
impact error variances instead of the preference parameters in typical choice models (e.g.,
Hensher 2004). Sometimes these error variance effects suggest some type of learning and
fatigue process (Brazel and Louviere 1998), but the evidence is mixed: Caussade et al.
(2005) systematically varied several design features and found that numbers of choice
tasks (choice sets) had the least influence of any design dimension, while Rose et al. (2009)
found no significant influence on the estimate of willingness to pay for a good in Australia,
limited impact in Taiwan, but a reasonably large impact in Chile.

In contrast to numbers of choice sets, numbers of options per choice set presented to
participants often influence choices, particularly if one option is the status quo (SQ). Some
of the observed differences previously reported are predictable from underlying economic
theory on incentive and information structures of different types of choice sets (Carson
and Groves 2007, 2011) that can be present in a sequence of choice sets with only two
options if people do not treat the choice sets as being independent (Carson and Groves
2007; Day et al. 2012). Adamowicz, Dupont, and Krupnick (2006) and Rolfe and Bennett
(2009) found participants more likely to choose a SQ option than would be predicted from
preference parameters estimated from a two-option version. DeShazo and Fermo (2002)
found a quadratic relationship between numbers of options and the error variance,
suggesting error variance first decreases, then increases with numbers of options, but
this finding is not universal. For example, Arentze et al. (2003) found no significant error
variance differences between DCEs for two versus three options; Caussade et al. (2005)
found numbers of options had the second largest influence on error variances of all design
criteria tested. Hensher (2006) and Rose et al. (2009) found some influence of the number
of options on estimates of WTP for changes in particular attributes.

SQ options are different from simply being an additional option because they ensure
individuals can maintain their current level of utility (Bateman et al. 2003). A complica-
tion for the SQ option with private and quasi-public goods is that it can differ between
individuals (Rose and Hess 2009). For private goods, instead of an SQ option, the fixed
option often is the possibility of not choosing or waiting to choose until later (e.g., Dhar
1997). For public goods, an SQ option may have special status from an informational
standpoint if public projects have a chance of failure or cost overruns. Moreover, as choice
options become more complex, SQ options tend to increase in relative attractiveness
(Boxall, Adamowicz, and Moon 2009). The special role of SQ options often is hypothe-
sized to be reflected in violation of the independence of irrelevant alternatives assumption
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(IIA) underlying simple conditional logit models. However, the empirical evidence is
mixed: Dhar and Simonson (2003) found IIA violations, while Brazell et al. (2006) and
Rose and Hess (2009) did not.

In contrast to the previously noted mixed evidence, increasing numbers of attributes
almost always seem to influence choices. The effect is particularly large as the number of
attributes becomes fairly large, as some people seem to use only a subset of attributes to
make choices. In an influential paper, Green and Srinivasan (1990) argued that partici-
pants cannot process many attributes simultaneously; they become tired and consequently
ignore or process attributes in random and uncontrolled ways or tend to use heuristics
leading to biased preference measures. Caussade et al. (2005) found the number of
attributes had the largest influence on error variances, of all the design criteria they
examined. Others (e.g., Arentze et al. 2003) found similar results for error variances but
also reported differences in parameter estimates, while Hensher (2006) and Rose et al.
(2009) found statistically significant differences in WTP measures as numbers of attributes
increased.

There is some evidence that the order in which attributes are presented matters. For
example, Kjaer et al. (2006) presented the price attribute as first or last and found order
produced statistically significant differences in the estimate of sensitivity to price. While
this is not surprising because firms often intentionally manipulate the order in which price
appears, such effects do not always occur. For example, Farrar and Ryan (1999) and Boyle
and Özdemir (2009) suggested attribute order effects likely depend on the number of
attributes and specific application contexts.

There also is mixed evidence that numbers of attribute levels and ranges of attribute
levels influence how people respond to choice tasks. Wittink, Krishnamurthi, and
Reibstein (1989) and Wittink, Krishnamurthi, and Reibstein (1992) found adding one or
more intermediate levels to a two-level attribute increased its impact, while Hensher
(2006) found the number of attribute levels influenced the probability of participants
ignoring some but not all DCE attributes. Caussade et al. (2005) found the number of
attribute levels had a statistically significant impact on the estimated error variance but
this effect was marginal and less important than effects associated with most other design
criteria studied; Rose et al. (2009) found impacts on WTP estimates depended on country.

For continuous variables, ranges of attribute levels also may matter. For example,
Meyer and Eagle (1982) found attributes with larger ranges had larger effects than those
with smaller relative ranges (all else being equal). A difficulty with such effects is that
increasing the range of an attribute also influences the nature of models that can be fitted
as one moves away from local linearity to being able to capture curvature. For example,
Ohler, Louviere, and Swait (2000) showed that changing the range of one attribute did not
influence estimates of parameter values when a more complex functional form was fitted
to their data. Caussade et al. (2005) concluded that attribute range had a relatively large
impact on error variances; Hensher (2004) found that increasing the range of levels
influenced WTP estimates.

Most relevant to this article are studies explicitly exploring choice task complexity
because different approaches to deriving statistical experimental designs for DCEs can
influence relationship between different choice options presented to individuals. Of
course, there are many definitions of complexity, none of which is ideal. An early study
defined complexity as the degree to which attribute levels differ across two options, and
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showed that variation in the correlational structure of attributes in choice tasks influenced
parameter estimates (Mazzota and Opaluch 1995). That result is consistent with the result
of Mellers and Biagini (1994), who found that when attribute levels overlap across options,
sensitivities to changes in other attributes increase. Dellaert, Brazell, and Louviere (1999)
showed that greater choice difficulty defined by price differences across options led to
larger estimated random error variances. Swait and Adamowicz (2001) used entropy to
measure task complexity and found that the degree of task complexity systematically
impacted estimated choice model parameters. Finally, DeShazo and Fermo (2002) found
that WTP estimates varied significantly as they varied correlations between DCE options.

Complexity also can be implicitly defined in terms of the statistical efficiency of a
particular DCE experimental design. For example, Louviere et al. (2008) studied 44
different experimental designs that varied different design criteria and levels of statistical
design efficiency. They found that the more statistically efficient a design, the greater is the
error variance in the data, a relationship independent of differences in design criteria.
Viney, Savage, and Louviere (2005) found that an orthogonal main effects design, a utility-
balanced design, and a random design did not impact the underlying parameter estimates.
However, the utility-balanced design (where participants should not prefer either option)
exhibited more random response variability. Bliemer and Rose (2011) compared results
from orthogonal and efficient designs under the assumption of nonzero parameter values
and found that efficient designs produce lower standard errors. They conjectured without
proof that efficient designs may produce higher error variance than orthogonal designs
because orthogonal designs have more dominated options that are easier to answer,
resulting in lower error variance. Louviere (2011) reported that substantial numbers of
experimental participants consistently and systematically chose based on one level of one
attribute (e.g., always choosing an option with the lowest price). More recently, Louviere
(2013) noted that this phenomenon seemed associated with optimal DCE designs in
general, not just Street and Burgess (2007) designs. Louviere (2013) also showed some
individuals never chose options with a particular attribute level, such as not choosing
options with the highest price level regardless of its other attributes. He found this
behavior to be most concentrated in DCEs using Street and Burgess (2007) designs but
it also seemed to be associated with other designs deemed efficient under particular
assumptions.

Such results suggest interesting trade-offs if a design matrix affects error variances and
with how people respond to choice tasks. For example, this may indicate types of
satisficing behavior that make choices look more deterministic and are independent of
particular random utility models used, as it does not rely on a distributional assumption
for the error component. In turn, this suggests that it may be useful to have an indicator
that is sensitive to such a state of affairs.

4. Research approach

We study rates of perfect separation among individuals induced by a given design.
“Perfect separation” means there is a perfect predictor of a given individual’s choices;
that is, there exist no detectable violations to a possible complete preference ordering of
the products. Perfect separation occurs if the error a participant made (if any) is smaller
than the maximum error detectable by a given design.
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We use a simple example to begin our research approach discussion that illus-
trates how design decisions can impact expected perfect separation rates and how
they relate to model error terms. Let there be four products, i ¼ 1; . . . ; 4, defined by
attributes Xa

i and Xb
i ; both assume values in the set {-0.5, 0.5} and utility is defined as

Ui ¼ Xa
i β

a þ Xb
i β

b. Products described by attribute levels (Xa;XbÞare {(−0.5, −0.5),
(−0.5, 0.5), (0.5, −0.5), (0.5, 0.5)}. In what follows we label the products 1–4.
Participants in a sequence of M choice sets each offering K products indicate their
preferred product. If K = 2 and M = 4 with choice sets (1,2), (1,3), (1,4), and (2,3)
there are 24 ¼ 16 possible choices. If a participant chooses product 1 in choice sets 1
to 3 and product 2 in set 4, this implies that U1 >U2, U1 >U3, U1 >U4, and U2 >U3

(we exclude the possibility of ties).
Any pair of coefficients ðβa; βbÞ that satisfies the set of inequalities

ðXa
2 � Xa

1Þβa þ Xb
2 � Xb

1

� �
βbh0 �iβb < 0

ðXa
3 � Xa

1Þβa þ Xb
3 � Xb

1

� �
βbh0 �iβa < 0

ðXa
4 � Xa

1Þβa þ Xb
4 � Xb

1

� �
βbh0 �iβa þ βb < 0

ðXa
3 � Xa

2Þβa þ Xb
3 � Xb

2

� �
βbh0 �iβa � βb < 0

could represent these preferences using the above utility function. The pair of
coefficients defines a separating hyperplane passing through the origin such that all
points defined by the difference in attributes lie to one side of the hyperplane.
Columns three and four in Table 1 calculate the difference in attributes for this
case, and an example of a separating hyperplane is depicted in the left panel of
Figure 2: Any line through the origin with all the points above it is a separating
hyperplane.

Had a participant chosen products 1, 3, 1, and 2 as the preferred products in the four
choice sets in Table 1, it would be the case that U1 >U2, U3 >U1, U1 >U4, and U2 >U3,
producing a preference reversal because the second and fourth choices imply that
U2 >U3 >U1, but the first choice gives U1 >U2. In this case no separating hyperplane
exists. The attribute differences for this case are calculated in columns six and seven of
Table 1, and are depicted in the right panel of Figure 2.

Table 1. Differences in attributes.
Separating hyperplane exists Separating hyperplane does not exist

Choice set Preferred ΔXa ΔXb Preferred ΔXa ΔXb

(1,2) 1 0 1 1 0 1
(1,3) 1 1 0 3 −1 0
(1,4) 1 1 1 1 1 1
(2,3) 2 1 −1 2 1 −1
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In the preceding example with 4 binary sets there are 24 ¼ 16 possible choice
sequences. Of these 16 possible choice sequences, there is a separating hyperplane for
only 8 (50%); that is, by inspection it can be seen that only 8 of the possible choice
sequences are consistent with a preference ordering. The remaining 8 sequences have
preference reversals, as illustrated in the preceding. Also note that this example with 4
products has 4! = 24 possible preference orderings. Only 8 choice sets are compatible with
a preference order, implying several preference orderings are observationally equivalent
(e.g., the ordering U4>U3>U2>U1 yields the same pattern of answers as the order-
ing U3>U4>U2>U1).

If, instead of the four choice sets just described, we consider all pairwise comparisons
(M = 6, K = 2), the percentage of cases where a separating hyperplane exists is 12.5% (out
of 64: 6 binary choices have 26 ¼ 64 possible outcomes). In the case of choice sets formed
by all triplets (M = 4, K = 3) the percentage of cases where a separating hyperplane exists
is 9.9%. Alternatively, if there are 9 products (e.g., let the attributes Xa

i and Xb
i assume

values in the set {–1, 0, 1}), and we expand the utility function to allow both linear and
quadratic terms in both attributes and maintain the same choice sets illustrated in the
preceding, percentages of possible answers consistent with separation are 75.0%, 37.5%,
and 14.8%, respectively.

The preceding discussion illustrates variations in proportions of perfect separation that
should be expected from different experimental designs if randomly generated choices are
analyzed with each option in every choice set having an equal probability of participant choice.
This benchmark captures statistical properties of designs without regard to preference and
choice processes. Generally, increasing the number of choice sets per participant (all else equal)
decreases separation, increasing the number of options per choice set decreases separation, and
increasing the number of options increases separation. Now consider the case of participants
who behave as if their underlying decision process is given by the conditional logit model
(McFadden 1974). In the conditional logit model the utility of a given option is given by the
expression: Ui ¼ Xa

i β
a þ Xb

i β
b þ σεi, where εi is an extreme value type I random term.

Clearly, if σissmall, choices generated by this model will approach 100% separation and
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Figure 2. Examples of existence of separating hyperplane.
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there will be no preference reversals; as σ increases, choices will appear increasingly random.
To illustrate the relationship between separation and σ we simulate choices generated by this
model: We let Xa

i and Xb
i assume values in the set {–0.5, 0.5} to define four products,

coefficients ðβa; βbÞ ¼ 1;�1ð Þ, the four choice sets defined earlier ((1,2), (1,3), (1,4), and
(2,3)), all pairwise combinations and all triplets, and a fixed value of σ. We simulate 1000 sets
of choices and calculate the perfect separation percentages in the 1000 simulations1 for each
combination of choice sets and σ. Results for different values of σ are in Table 2.

Perfect separation yields nonidentification of preference parameters at the individual
level. At a population level, although perfect separation is rare, the ability to estimate
models with heterogeneous individuals relies solely on restrictions imposed across indi-
viduals (usually under some form of regularization) for identification.

5. Methodology

For each participant, we determine whether there exists a separating hyperplane that
perfectly classifies the observed responses (i.e., a linear utility index that perfectly classifies
the data without error). This is done by solving a linear program (LP) for finding
separating hyperplanes that we describe in some detail in the following. Thus, each
participant is classified with respect to the existence (or not) of a separating hyperplane
that perfectly classifies that participant’s responses. We then relate this binary classifica-
tion of each participant to the specific design to which that participant was assigned. We
then estimate a logistic regression that describes the effects of design characteristics on the
likelihood of obtaining perfect separation.

We start by introducing notation and then describe a method that can be used to
determine whether there is perfect separation. Throughout we use the following notation:
n indexes participants, c indexes choice sets, i indexes options, Xnci is a row vector of
attributes of option i in choice set c faced by participant n, βn is a column vector of
coefficients, and Un

ci ¼ Xn
ciβn is the participant n’s utility of option i in choice set c. The

choice options are relabeled according to the rank they have been given by participants;
consequently, the most preferred option by participant n in choice set c has utility Un

c1, the
second most preferred has utility Un

c2, and so forth. All the analysis is done at the
participant level; hence, whenever possible to avoid confusion we drop the superscript n.

If a participant states her most preferred option from several choice sets of four
options, the following inequalities should be satisfied for all choice sets c: Uc1>Uc2,
Uc1>Uc3, and Uc1>Uc4. Thus, we search for the existence of a coefficient vector β such

Table 2. Separation and choice sets and variance.
σ 0.1 0.2 0.5 1.0 2.0 5.0 10.0

Four pairs 100% 99% 87% 67% 57% 53% 51%
All pairs 100% 97% 55% 27% 16% 13% 13%
All triplets 100% 97% 58% 24% 13% 11% 10%

1Even though the systematic component of the utility is the same for products 1 and 4 in this
numeric example, the error component will always ensure that there are no ties in the
preferences between these two products.
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that these inequalities are satisfied for all c. We do this by solving the following LP
problem (see, e.g., Mangasarian 1965):

min
β;εcr

X

c

X3

r¼1

εcr

s:t:

Xc2 � Xc1ð Þβ � �1þ εc1;"c

Xc3 � Xc1ð Þβ � �1þ εc2;"c

Xc4 � Xc1ð Þβ � �1þ εc3;"c

εcr � 0;"c; r

If a solution ε�cr; β
�� �

to the preceding problem has all ε�cr ¼ 0, that is, the objective
function at the optimum is 0, then β� defines a hyperplane that perfectly classifies all the
participant’s choices.2 Whenever a solution is found that is 0 at the optimum, we classify a
participant as perfectly separable.

In the analysis that follows all attributes are qualitative and levels are indicator vari-
ables, ruling out functional form issues (except attribute interactions). Because we restrict
ourselves to perfect separation, we also rule out issues relating to distributions of error
terms.

6. DCE data sets and experimental designs

We begin by describing four DCE data sets used to look at the impact of survey design on
participant behavior in choice tasks produced by discrete choice experiments. In each case
a design of designs approach3 was used. The data sets used can be summarized as follows:

2Informally, correspondence between a zero at the optimum and existence of a separating
hyperplane can be seen as follows: (i) A solution to the problem always exists since for any β,
εcr can be set as large as desired thus satisfying all constraints; (ii) the optimum is always � 0
given the constraints on the εcr ; (iii) if the optimum is 0, then due to constraints on εcr it must
be that all εcr are 0 at the optimum; (iv) in this case inequalities of the type Xcj � Xc1

� �
β � �1

hold; (v) multiplying both sides of the inequalities by any positive number leaves the inequal-
ities and LP program optimum unchanged, so −1 is just a convenient normalization; (vi) the
inequalities hold with 1 replaced by any arbitrary positive number, so one can choose any
arbitrary small positive number to conclude a β exists such that inequalities Xcj � Xc1

� �
β<0

hold; and (vii) these inequalities are the definition of a separating hyperplane. The converse is
also true: If a solution is not 0 at the optimum, no separating hyperplane exists. Mangasarian
(1965) has a detailed derivation showing the stated LP can identify separating hyperplanes.

3The expression “design of designs” refers to different design characteristics being varied by a
design (originally proposed by D. A. Hensher 2004).
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(1) Carbon tax DCE: a DCE designed to elicit preferences over different possible
mechanisms to tax carbon emissions. The different attributes used to define a
given taxation policy option are detailed in the Appendix in Table A1. There are
32 different designs that vary in the method that generated the experimental design,
the number of choice tasks per participant, the number of attributes with two levels,
and the number of attributes with four levels. All choice tasks have four options.
The structure of each of the 32 designs is detailed in Table A5.

(2) Solar panels DCE: a DCE designed to elicit willingness to pay for solar panels. The
different attributes used to define a given tax policy option are detailed in the
Appendix in Table A2. There also are 32 different designs with the same structure
as the carbon tax data set, as detailed in Table A6.

(3) Flights DCE: a DCE designed to elicit preferences for different air travel options.
The attributes used to define different flight options are detailed in the Appendix in
Table A3. There are 33 different designs that vary in the method for generating the
experimental design, the number of choice tasks per participant, the number of
options per choice task, the number of attributes with two levels, and the number of
attributes with four levels. The structure of each of the 33 designs is detailed in
Table A7.

(4) Pizza DCE: a DCE designed to elicit preferences for different pizzas. The attributes
used to define different pizza options are detailed in the Appendix in Table A4.
There are also 33 designs used with the same structure as the flights data set, as
detailed in Table A8.

Hereafter, we call the four data sets the carbon, solar, flights, and pizza data sets,
respectively.

We sampled all participants from the Pureprofile Web panel that has recruited
approximately 600,000 unique households and reasonably represents the general
Australian population. Participants were randomly assigned to one experimental condi-
tion; sample sizes vary by product or service type but each has approximately 50 people.
We classified all participants in each data set by whether a perfect separation existed or not
using methods outlined in the preceding. This classification is the dependent variable in
our analyses; explanatory variables are design characteristics in Table 3. We computed

Table 3. Variable descriptions.
Data sets

Variable Description Carbon Solar Flights Pizza
d_sb S&B design ✓ ✓ ✓ ✓
d_sas SAS design ✓ ✓ ✓ ✓
d_bibd BIBD design ✓ ✓ ✗ ✗
d_rd Random design ✓ ✓ ✗ ✗
d_saw Sawtooth design ✗ ✗ ✓ ✓
d_16 16 choice tasks per participant ✓ ✓ ✓ ✓
d_24 24 choice tasks per participant ✓ ✓ ✗ ✗
d_32 32 choice tasks per participant ✗ ✗ ✓ ✓
Nprod Number of unique products ✓ ✓ ✓ ✓
Natt Number of attributes ✓ ✓ ✓ ✓
Nalt Number of options per choice set ✗ ✗ ✓ ✓
D max Dmax

h ✓ ✓ ✓ ✓
D dif Ddif

h
✓ ✓ ✓ ✓
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three measures of disparity of options allocated to choice sets for each design. Let Xhci be a
vector of attributes of option i in choice set c of design h and dH x; yð Þ be the Hamming
distance between vectors x andy (i.e., number of elements where vectors x and y differ).
The three measures are the average maximum distance between options in a choice set
Dmax

h , the average minimum distance between options in a choice set Dmin
h , and the

difference between the two Ddif
h ¼ Dmax

h � Dmin
h . Specifically, we have:

Dmax
h ¼ 1

C

XC

c¼1

max
i;j;i�j

dH Xhcj;Xhci
� �

Dmin
h ¼ 1

C

XC

c¼1

min
i;j;i�j

dH Xhcj;Xhci
� �

We also computed a baseline separation measure for each data set and each design: We
drew 1000 choice sequences uniformly at random for each experiment and calculated the
percentage of separated cases to measure separation induced by a given design. We “effects
coded” indicator variables and normalized continuous variables by dividing by twice their
standard deviation (a 1-unit increase = an increase of 2 standard deviations in original
units).

7. Results

Results of a regression analysis relating separation to design characteristics are in
Table 4; Figures 3 and 4 are corresponding graphical results for easy comparison.
Results are consistent across data sets: More (a) choice sets per person, (b) options
per choice set, and (c) attributes per option all decrease separation; the number of
unique design options increases separation. Note the large disparity in unique option
numbers across designs: BIBD designs have the least (16); some SAS and S&B
designs have over 100. Also, in all cases higher maximum disparity between options
in a given choice set (Dmax

h ) gives more separation, and more similarity between
options (Dmax

h ) gives less separation. After controlling for design features, S&B
designs produced less separation in both carbon and solar data sets, but more in
flights and pizza.

Including a baseline measure and controlling for separation expected from a random
response pattern maintains all results, except dummy variables for each design are
nonsignificant. These dummy variables capture separation induced merely by statistical
properties of designs, suggesting separation results are associated with induced participant
behavior due to designs. Carbon and solar data sets yield the same results based on most
preferred option choices after accounting for differences in constant terms. The same
results obtain for flights and pizza. All results are in Table 5.
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8. Discussion and conclusions

A considerable amount of research effort has been invested in trying to answer the
question of how to design DCEs to extract preference information efficiently. Recent
work focused on the key role of the nature of the explicit or implicit prior information
analysts are willing to assume about the model to be fit to the data and the unknown
parameters of that model. We ask a different question in this article that to our
knowledge has not been previously addressed. That is, can the particular experimental

Table 4. Results for separation based on most preferred alternative.
Results for separation based on most preferred alternative

Carbon Solar Flights Pizza Carbon Solar Flights Pizza

Without baseline With baseline

Constant −2.494 −2.154 5.181 3.793 −2.158 −1.685 4.314 3.528
t Statistic −5.07 −4.34 5.61 4.40 −4.26 −3.14 3.42 3.44
p Value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0017 0.0006 0.0006
S&B design −0.556 −0.703 0.461 0.349 −0.420 −0.531 0.363 0.336

−2.19 −2.69 2.65 2.05 −1.62 −1.95 1.79 1.94
0.0284 0.0072 0.0080 0.0407 0.1049 0.0507 0.0729 0.0523

SAS design 0.063 −0.298 −0.622 −0.788 0.145 −0.238 −0.477 −0.742
0.33 −1.52 −3.01 −3.93 0.76 −1.21 −1.88 −3.32
0.7405 0.1281 0.0027 0.0001 0.4460 0.2253 0.0598 0.0009

BIBD design −0.023 0.562 0.004 0.555
−0.05 1.30 0.01 1.30
0.9563 0.1923 0.9923 0.1941

RND design 0.517 0.439 0.271 0.214
1.76 1.45 0.87 0.67
0.0777 0.1482 0.3845 0.5026

SAW design 0.161 0.439 0.114 0.406
0.55 1.52 0.38 1.36
0.5831 0.1281 0.7033 0.1753

16 choice sets 0.676 0.745 1.035 1.439 0.579 0.534 0.935 1.398
5.09 5.42 3.30 4.60 4.20 3.20 2.85 4.30
0.0000 0.0000 0.0010 0.0000 0.0000 0.0014 0.0043 0.0000

24 choice sets −0.676 −0.745 −0.579 −0.534
−5.09 −5.42 −4.20 −3.20
0.0000 0.0000 0.0000 0.0014

32 choice sets −1.035 −1.439 −0.935 −1.398
−3.30 −4.60 −2.85 −4.30
0.0010 0.0000 0.0043 0.0000

Nprod 0.742 1.534 1.592 2.229 0.857 1.372 1.537 2.190
1.06 2.12 2.88 3.89 1.22 1.90 2.77 3.78
0.2894 0.0336 0.0040 0.0001 0.2206 0.0569 0.0056 0.0002

Natt −1.915 −1.871 −2.205 −0.358 −1.432 −1.589 −1.629 −0.226
−2.70 −2.54 −1.83 −0.30 −1.95 −2.13 −1.22 −0.18
0.0070 0.0110 0.0676 0.7666 0.0517 0.0335 0.2220 0.8551

Nalt −1.277 −1.482 −1.094 −1.419
−6.74 −7.56 −4.17 −5.98
0.0000 0.0000 0.0000 0.0000

D max 4.017 3.724 2.056 0.810 2.886 2.766 1.377 0.652
3.55 3.16 1.59 0.62 2.35 2.20 0.94 0.49
0.0004 0.0016 0.1120 0.5333 0.0187 0.0279 0.3454 0.6266

D dif −1.057 −1.442 0.059 0.112 −0.693 −0.937 0.079 0.118
−2.16 −2.78 0.24 0.48 −1.34 −1.65 0.32 0.50
0.0309 0.0054 0.8113 0.6334 0.1788 0.0994 0.7489 0.6168

Baseline 3.185 1.649 0.786 0.430
2.28 2.17 0.98 0.47
0.0225 0.0302 0.3253 0.6410
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design used to construct a DCE induce potential demand artifacts in a range of real
DCE data sets? The data sets we studied spanned a reasonably large range in terms of
types of goods, numbers of choice options, numbers of attributes, and numbers of
attribute levels. In particular, we studied four DCE data sets that exhibit large differ-
ences in (a) topics of study (e.g., emissions trading schemes, delivered pizza services,
and airline flights), (b) numbers of attributes, (c) numbers of attribute levels, and (d)
numbers of choice options. These DCE design features have been shown (to greater or
lesser degrees) to influence how people respond to choice tasks (e.g., Caussade et al.
2005). We crossed these factors with a range of commonly used experimental designs
to allow us to investigate and quantify systematic differences in outcomes associated
with types of designs.

Our results indicate that different experimental designs produce choice sets that make it
easier or harder to employ simple decision rules, which in turn allow choices to be made
on one or a small number of attribute levels. The range of optimally efficient designs
(generated under different assumptions) that we studied tend to produce options in choice
sets where every level of every attribute appears once, with Street and Burgess (2007)
designs being the most pronounced in this regard. Empirically, there is a difficulty in any
real data set of interpreting the behavioral outcomes because some people may express
their preferences in way(s) that involve putting zero weight on some or possibly all but
one attribute. However, one should not expect to observe different degrees of such
behavior across different experimental designs unless particular designs induce greater/
lesser tendency to engage in such behavior. Because such preferences are generally

S&B design

SAS design

BIBD design

Random design

Sawtooth design

16 choice sets

24 choice sets

32 choice sets

Total # of alt

# attributes

# of alternatives

D max

D dif

Designs

# of choice sets

Size measures

Dist measures

-6 -4 -2 0 2 4 6

carbon solar flights pizza

Separation Logits - without baseline

Figure 3. Logit results without baseline.

16 T. RIBEIRO ET AL.



regarded as aberrant, finding more of such behavior is suggestive of a design-induced
demand artifact sensitive to encouraging such behavior that is not confounded with the
impacts of the design on the error variance.

We found that different designs induce rates of perfect separation at an individual level
that exceed what was expected given their different statistical properties. This induced
behavior may at best only impact the precision with which preference parameters are
estimated. Nonetheless, this effect should be taken into account when choosing a design

S&B design

SAS design

BIBD design

Random design

Sawtooth design

16 choice sets

24 choice sets

32 choice sets

Total # of alt

# attributes

# of alternatives

D max

D dif

Designs

# of choice sets

Size measures

Dist measures

-6 -4 -2 0 2 4 6

carbon solar flights pizza

Separation Logits - with baseline

Figure 4. Logit results with baseline.

Table 5. Tests of equality between data sets.
Common intercept Different intercept

Stacked data sets LR DF p Value LR DF p Value

Carbon & Solar 45.0 9 0.0000 7.9 8 0.4419
Carbon & Flights 67.3 6 0.0000 52.1 5 0.0000
Solar & Pizza 51.1 6 0.0000 49.5 5 0.0000
Solar & Flights 39.0 6 0.0000 33.7 5 0.0000
Carbon & Pizza 31.5 6 0.0000 31.4 5 0.0000
Flights & Pizza 8.5 9 0.4886 5.5 8 0.7071
Carbon & Solar & Flights 108.4 15 0.0000 57.8 13 0.0000
Carbon & Solar & Pizza 93.5 15 0.0000 55.8 13 0.0000
Carbon & Flights & Pizza 93.5 15 0.0000 82.5 13 0.0000
Solar & Flights & Pizza 56.0 15 0.0000 52.4 13 0.0000
Carbon & Solar & Flights & Pizza 139.8 24 0.0000 93.5 21 0.0000

Note. LR—Likelihood ratio; DF—degrees of freedom.
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by looking at its statistical efficiency. In the worst case the induced behavior may also
produce biases in estimates of preference parameters.

These results also have relevance for estimating the distribution of preferences. That is,
designs that generate higher separation require more reliance on restrictions across
individuals in the form of higher degrees of smoothing to estimate distributions of
preference parameters compared with designs that can produce more identification of
preferences at the individual level.

We believe that our test for a separating hyperplane can potentially be adapted to look at
which generalizations of the conditional multinomial logit model are most consistent with
the underlying individual data. For instance, the popular latent class specification effectively
assumes there are a relatively small number of “preference” types and that all individuals can
be completely characterized by one of them. This suggests any individual’s choices could be
characterized being perfectly explained by a one of a small number of distinct separating
hyperplanes. Likewise, the popular random parameter (mixed) logit model with the usual
continuous normally distributed parameter assumption has implications for the distribution
of separating hyperplanes across individuals. The challenge in using the separating hyper-
plane test in this way is the development of experimental designs that would clearly
distinguish between competing hypotheses about the distribution of preference parameters.
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Appendix

Table A1. Attributes of carbon data set.
Attribute levels

Attribute
number Attribute description 1 2 3 4

1 Start year 2011 2013
2 Revenue allocation Lower GST Give to low-income

households/seniors
Reduce
business
taxes

Improve government
services and reducing
deficit

3 Invest 20% of revenue in
research and development
(R&D)

No Yes

4 Transportation exempted
for first 3 years

No Yes

5 Special treatment for
energy sectors for first
3 years

No Yes

6 Method of implementing
carbon reductions

Carbon trading
scheme

Carbon tax Technology
standard

Hybrid scheme

7 International role for
Australia

Begin large
carbon
reductions now

Wait until China and
United States
commit

8 2020 Emission reduction
target*

3%/5% 10% 20% 25%/30%

GST, goods and services tax.
*Designs with wider range use extreme values (3%/30%).
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Table A4. Attributes for pizza data set.
Attribute levels

Attribute
number Attribute description 1 2 3 4

1 Brand Pizza Hut Dominos Eagle Boys Pizza Haven
2 Price $12.00 $14.00 $16.00 $18.00
3 Number of toppings 1 2 3 4
4 Average delivery time 10 minutes 20 minutes 30 minutes 40 minutes
5 Likely range in delivery

time
Plus or minus 10% Plus or minus

20%
Plus or minus
30%

Plus or minus
40%

6 How often pizza arrives
hot

10/10 8/10 6/10 4/10

7 Type of crust Regular Thick Cheese stuffed Thin
8 Free Coke or Pepsi No Yes
9 Free dessert No Yes
10 Free garlic bread/bread

sticks
No Yes

11 Free side salad No Yes
12 Free hot chicken wings No Yes

Table A2. Attributes of solar data set.
Attribute levels

Attribute
number

Attribute
description 1 2 3 4

1 Country of origin Australia China USA Germany
2 Capacity 1.0 kW 1.5 kW 2.0 kW 2.5 kW
3 Government

rebate
$400 × (capacity –
1) + 2000

$2000 × (capacity –
1) + 2500

$2500 × (capacity –
1) + 4000

$3000 × (capacity –
1) + 5500

4 Production output
warranty

15 years 30 years

5 Size (capacity/0.140) per
kW/m2

(capacity/0.050) per
kW/m2

6 Product warranty 5 Year warranty—
$0

10 Year warranty—
$1000

7 Purchase price $(5500 × capacity)
per kWh

$(6500 × capacity)
per kWh

$(7500 × capacity)
per kWh

$(8500 × capacity)
per kWh

8 Payback time Formula 1 Formula 2

Table A3. Attributes of flights data set.
Attribute levels

Attribute
number Attribute description 1 2 3 4

1 Total travel time 4 5 6 7
2 Round-trip airfare (excluding tax) $350 $450 $550 $650
3 Number of stops None One
4 Juice/water/soft drinks Not available All free
5 Airline Qantas Virgin Blue JetStar Australian Airlines
6 Frequent flyer club No Yes
7 Food None Free hot

meal
Free snack Food can be

purchased
8 Audio/video entertainment Not available Free $3 $6
9 Wait in baggage claim for bags 10 minutes 20 minutes 30 minutes 40 minutes
10 Percent of time flight departs on

time
100% 80%

11 Typical wait to check in 5 minutes 10 minutes 20 minutes 40 minutes
12 Wine/beer $6 each Both free
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Table A5. Designs for carbon data set.

Version Design

Choice
tasks per
respondent

Levels per attribute
Attributes
with 2
levels

Attributes
with 4
levels

Attributes
total

Number
of

responses

Number of
distinct

alternatives

Attribute number

1 2 3 4 5 6 7 8

1 SB 16 2 4 0 0 0 4 2 2 3 2 5 55 56
2 SAS 16 2 4 0 0 0 4 2 2 3 2 5 55 60
3 RD 16 2 4 0 0 0 4 2 2 3 2 5 55 44
4 SB 24 2 4 0 0 0 4 2 2 3 2 5 55 74
5 SAS 24 2 4 0 0 0 4 2 2 3 2 5 55 70
6 RD 24 2 4 0 0 0 4 2 2 3 2 5 55 73
7 BIBD 20 2 4 0 0 0 4 2 2 3 2 5 55 16
8 BIBD 20 2 4 0 0 0 4 2 2 3 2 5 55 16
1 SB 16 2 4 0 0 0 4 2 4 2 3 5 55 64
2 SAS 16 2 4 0 0 0 4 2 4 2 3 5 55 59
3 RD 16 2 4 0 0 0 4 2 4 2 3 5 55 62
4 SB 24 2 4 0 0 0 4 2 4 2 3 5 55 83
5 SAS 24 2 4 0 0 0 4 2 4 2 3 5 55 75
6 RD 24 2 4 0 0 0 4 2 4 2 3 5 55 90
7 BIBD 20 2 4 0 0 0 4 2 4 2 3 5 55 16
8 BIBD

rg
20 2 4 0 0 0 4 2 4 2 3 5 55 16

1 SB 16 2 4 2 2 2 4 2 2 6 2 8 55 64
2 SAS 16 2 4 2 2 2 4 2 2 6 2 8 55 61
3 RD 16 2 4 2 2 2 4 2 2 6 2 8 55 64
4 SB 24 2 4 2 2 2 4 2 2 6 2 8 55 93
5 SAS 24 2 4 2 2 2 4 2 2 6 2 8 55 82
6 RD 24 2 4 2 2 2 4 2 2 6 2 8 55 96
7 BIBD 20 2 4 2 2 2 4 2 2 6 2 8 55 16
8 BIBD

rg
20 2 4 2 2 2 4 2 2 6 2 8 55 16

1 SB 16 2 4 2 2 2 4 2 4 5 3 8 55 64
2 SAS 16 2 4 2 2 2 4 2 4 5 3 8 55 61
3 RD 16 2 4 2 2 2 4 2 4 5 3 8 55 64
4 SB 24 2 4 2 2 2 4 2 4 5 3 8 55 96
5 SAS 24 2 4 2 2 2 4 2 4 5 3 8 55 81
6 RD 24 2 4 2 2 2 4 2 4 5 3 8 55 96
7 BIBD 20 2 4 2 2 2 4 2 4 5 3 8 55 16
8 BIBD

rg
20 2 4 2 2 2 4 2 4 5 3 8 55 16

Note. SB—Street & Burgess design; SAS—SAS software design; RD—random design; BIBD—balanced incomplete block
design; BIBD rg—BIBD design with a wide range for attribute.
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Table A6. Designs for solar data set.

Version Design

Choice
tasks per
respondent

Levels per attribute
Attributes
with 2
levels

Attributes
with 4
levels

Attributes
total

Number
of

responses

Number of
distinct

alternatives

Attribute number

1 2 3 4 5 6 7 8

1 SB 16 0 4 2 2 0 0 4 2 3 2 5 50 56
2 SAS 16 0 4 2 2 0 0 4 2 3 2 5 50 60
3 RD 16 0 4 2 2 0 0 4 2 3 2 5 50 44
4 SB 24 0 4 2 2 0 0 4 2 3 2 5 50 74
5 SAS 24 0 4 2 2 0 0 4 2 3 2 5 50 70
6 RD 24 0 4 2 2 0 0 4 2 3 2 5 50 73
7 BIBD 20 0 4 2 2 0 0 4 2 3 2 5 50 16
8 BIBD

rg
20 0 4 2 2 0 0 4 2 3 2 5 50 16

9 SB 16 0 4 4 2 0 0 4 2 2 3 5 50 64
10 SAS 16 0 4 4 2 0 0 4 2 2 3 5 50 59
11 RD 16 0 4 4 2 0 0 4 2 2 3 5 50 62
12 SB 24 0 4 4 2 0 0 4 2 2 3 5 50 83
13 SAS 24 0 4 4 2 0 0 4 2 2 3 5 50 75
14 RD 24 0 4 4 2 0 0 4 2 2 3 5 50 90
15 BIBD 20 0 4 4 2 0 0 4 2 2 3 5 50 16
16 BIBD

rg
20 0 4 4 2 0 0 4 2 2 3 5 50 16

17 SB 16 2 4 2 2 2 2 4 2 6 2 8 50 64
18 SAS 16 2 4 2 2 2 2 4 2 6 2 8 50 61
19 RD 16 2 4 2 2 2 2 4 2 6 2 8 50 64
20 SB 24 2 4 2 2 2 2 4 2 6 2 8 50 93
21 SAS 24 2 4 2 2 2 2 4 2 6 2 8 50 82
22 RD 24 2 4 2 2 2 2 4 2 6 2 8 50 96
23 BIBD 20 2 4 2 2 2 2 4 2 6 2 8 50 16
24 BIBD

rg
20 2 4 2 2 2 2 4 2 6 2 8 50 16

25 SB 16 4 4 2 2 2 2 4 2 5 3 8 50 64
26 SAS 16 4 4 2 2 2 2 4 2 5 3 8 50 61
27 RD 16 4 4 2 2 2 2 4 2 5 3 8 50 64
28 SB 24 4 4 2 2 2 2 4 2 5 3 8 50 96
29 SAS 24 4 4 2 2 2 2 4 2 5 3 8 50 81
30 RD 24 4 4 2 2 2 2 4 2 5 3 8 50 96
31 BIBD 20 4 4 2 2 2 2 4 2 5 3 8 50 16
32 BIBD

rg
20 4 4 2 2 2 2 4 2 5 3 8 50 16

Note. SB—Street & Burgess design; SAS—SAS software design; RD—Random design; BIBD—Balanced incomplete block
design; BIBD rg—BIBD design with a wide range for attribute.
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