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A MORE ROBUST DEFINITION
OF SUBJECTIVE PROBABILITY

By Magrk J. MACHINA AND DAVID SCHMEIDLER!

The goal of choice-theoretic derivations of subjective probability is to separate a
decision maker’s underlying beliefs (subjective probabilities of events) from their prefer-
ences (attitudes toward risk). Classical derivations have all relied upon some form of the
Marschak-Samuelson “Independence Axiom” or the Savage “Sure-Thing Principle,”
which imply that preferences over lotteries conform to the expected utility hypothesis.
This paper presents a choice-theoretic derivation of subjective probability, in a Savage-type
setting of purely subjective uncertainty, which neither assumes nor implies that the
decision maker’s preferences over lotteries necessarily conform to the expected utility
hypothesis.

Keyworps: Subjective probability, uncertainty, subjective uncertainty, non-expected
utility theory, expected utility theory, Leonard J. Savage.

1. INTRODUCTION

THE MODERN OR “CHOICE-THEORETIC” theory of subjective probability, as
developed in the seminal works of Ramsey (1931), Anscombe and Aumann
(1963), and Savage (1954), can be viewed as the culmination of two separate
lines of inquiry. The first of these came out of the mathematics and mathemati-
cal statistics literature, and addressed the question:

“When can an individual’s beliefs over the relative likelihoods of events be
said to be consistent with classical? probability theory?”

In other words, given a binary relation >, over events (including their unions,
intersections, and complements) where 4 >, B denotes that A is believed to be
at least as likely as B, when can >, be represented by a classical probability
measure u(-) in the sense that 4 >,B if and only if wu(A) > w(B)? This
concept, known as intuitive or qualitative probability, was explored by de Finetti
(1937, 1949), Koopman (1940a, 1940b, 1941), Kraft, Pratt, and Seidenberg
(1959), Chateauneuf (1985), and others,> who obtained necessary and sufficient
conditions for such a relation to be representable by a classical probability
measure.

! We are grateful to Vince Crawford, Valentino Dardanoni, Eddie Dekel, Mark Durst, Simon
Grant, Birgit Grodal, Faruk Gul, Edi Karni, David Kreps, Irving LaValle, Ehud Lehrer, Duncan
Luce, Salvatore Modica, Michael Rothschild, Joel Sobel, Max Stinchcombe, Menahem Yaari, the
Editor, anonymous referees, and especially Peter Fishburn and Peter Wakker for helpful discussions
on this material. Support from the Deutsche Forschungsgemeinschaft, Gottfried-Wilhelm-Leibniz
Forderpreis during the 1989 Bonn Workshop in Mathematical Economics is gratefully acknowl-
edged. Responsibility for errors and opinions is our own.

2By “classical” probability we mean a measure that satisfies the axioms of finitely additive
probability theory. We consider the countably additive case in Section 6.2.

3 E.g., Villegas (1964, 1967), Fishburn (1969b, 1983a, 1983b, 1986), Luce (1967, 1968), Wakker
(1981), and Chateauneuf and Jaffray (1984).
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While this approach gave a characterization of what may be termed “prob-
abilistically sophisticated” beliefs, it could not fully serve the goals of economists,
who were interested in the issue of choice under uncertainty, or in other words,
in the question:

“When can an individual’s choices over uncertain economic prospects be said
to be consistent with classical probability theory?”

This was the question addressed by Ramsey, Anscombe-Aumann, and Savage.

The second line of inquiry that led to this question, and to its resolution by
the above researchers, came out of the literature on the foundations of the
expected utility model of decision making. Most researchers in this area, from
Bernoulli (1738) through von Neumann and Morgenstern (1944, 1947, 1953) and
Herstein and Milnor (1953), represented uncertainty by means of explicit
probabilities, so that the objects of choice consisted of well-defined probability
distributions over outcomes. (This form of representation is known as objective
uncertainty.) These researchers obtained necessary and sufficient conditions for
preferences over probability distributions to be representable by the expectation
of a von Neumann-Morgenstern utility function over outcomes.

The representation of uncertainty by formal probabilities has allowed for the
application of a tremendous number of results from probability theory, and it is
hard to imagine where the theory of games, the theory of search, or the theory
of auctions would be without it.# However, real-world uncertainty seldom
presents itself in terms of exogenously specified probabilities, but rather, as
alternative “events” or “states of nature,” so that instead of well-defined
objective probability distributions, the objects of choice are typically “bets” or
“acts” which assign outcomes to the alternative possible events or states. (This
form of representation is known as subjective uncertainty.) Given the unrealism
of using probabilities as a primitive notion, but given the value of being able to
derive them from preferences or choice, it is no surprise that this line of
research also led back to the previously displayed question, which can be
phrased more formally as:

“When can choices over subjectively uncertain acts be said to be consistent
with probabilistically sophisticated beliefs over event likelihoods?”

In other words, whereas the theory of qualitative probability had developed a
method of deriving probabilities from beliefs, it had not yet derived them from
choice, and whereas the original axiomatic work on expected utility had derived
utilities from choice, it had not yet derived probabilities in a similar manner.
The choice-theoretic approach to subjective probability, as pioneered by
Ramsey, Anscombe-Aumann, and Savage, and further explored by Arrow (1965,
Lect. 1; 1970, Ch. 3), Fishburn (1970), and others, answered this question by
obtaining conditions on preferences over subjectively (or mixed subjectively /ob-

4 Although researchers such as Dempster (1968), Shafer (1976), and Zadeh (1978) have proposed
alternative approaches for the numerical representation of uncertain beliefs, classical probability
theory remains the predominant normative and analytical framework for the quantitative represen-
tation of uncertainty (e.g., Lindley (1982)).
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jectively) uncertain acts which imply that the individual: (i) possesses a unique,
well-defined classical probability distribution over events, (ii) possesses a von
Neumann-Morgenstern utility function over outcomes, and (iii) ranks subjec-
tively uncertain acts according to the expected utility of their induced probabil-
ity distributions over outcomes.

The earliest of these approaches, that of Ramsey (1931), worked in terms of
subjective uncertainty, including an event with a known subjective probability of
1/2, from which the utility function over outcomes and hence the subjective
probabilities of all other events could be derived. Anscombe and Aumann
(1963) used “horse race-roulette lotteries” involving both subjective and objec-
tive uncertainty, from which both a utility function and subjective event proba-
bilities were derived.’ In what has been termed the “crowning glory of choice
theory,”® Savage used purely subjective acts over an infinitely divisible state
space, deriving a utility function over outcomes and a classical subjective
probability measure over states. Although their settings differ, each provides a
characterization of what can be termed a probabilistically sophisticated’ expected
utility maximizer. Since the derived probability of each event as well as the
derived utility of each outcome are independent of the particular assignment of
outcomes to events, these representations are often referred to as yielding a
separation of preferences from beliefs.

The purpose of this paper is to investigate the robustness of these characteri-
zations of probabilistically sophisticated choice behavior. Specifically, we want
to determine how much of the choice-theoretic development of subjective
probability depends upon the hypothesis of expected utility maximization; that
is,

“Do departures from the expected utility property of preferences affect our
ability to characterize the concept of probabilistically sophisticated beliefs?”’

Or put in another manner,

“What does it take for choice behavior that does not necessarily conform to
the expected utility hypothesis to nonetheless be based on probabilistic
beliefs?”

We will call such an agent a probabilistically sophisticated non-expected utility
maximizer.

The rationale for this undertaking comes from three sources. The first is the
experimental work of Allais (1953, 1979), Kahneman and Tversky (1979), and
others, who have uncovered systematic violations of the expected utility hypoth-
esis in experimentally observed preferences over gambles involving explicit
numerical probabilities. If agents do not maximize expected utility in such
well-defined settings of objective uncertainty, it is hard to believe that they will

5 Similar derivations have been developed by Davidson and Suppes (1956), Pratt, Raiffa, and
Schlaifer (1964), Ferreira (1972), and Fishburn (1967, 1969a).

5 Kreps (1988, p. 120).

7 Fishburn (1987, p. 828; 1988, p. 27) has used the term “reduction principle” to denote the
property we are terming “probabilistic sophistication.”
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do so in real world settings of subjective uncertainty. Not surprisingly, these
findings have led to the development of numerous non-expected utility models
of decision making.® However, with the exceptions of Yaari (1969), Schmeidler
(1982, 1989), Gilboa (1987), Hazen (1987), Fishburn (1989), Wakker (1989a,
Ch. VI; 1989b), and Sugden (1992), these new theories apply to preferences over
objective probability distributions, so that they too are subject to the criticism
that real world uncertainty is subjective, and stand in need of an operational
foundation in terms of preferences over subjectively uncertain acts.

The second justification for our work stems from the fact that probabilistically
sophisticated non-expected utility preferences arise naturally in situations of
delayed resolution of uncertainty. Extending the well-known argument of
Markowitz (1959, Ch. 11), Mossin (1969), and Spence and Zeckhauser (1972) to
the case of subjective uncertainty, we show that while an expected utility
maximizer’s preferences over delayed-resolution prospects typically violate the
expected utility hypothesis, they retain the property of probabilistic sophistica-
tion. Thus, situations involving delayed-resolution subjective uncertainty induce
probabilistically sophisticated non-expected utility behavior.

A final reason for “liberating” the theory of subjective probability from the
expected utility hypothesis stems from one of the original goals of the
Ramsey/Anscombe-Aumann /Savage approach, namely the separation of an
individual’s preferences from their beliefs. If such a separation is analytically or
normatively desirable (and we agree that it is), it makes sense to separate the
characterization of probabilistic beliefs from as many restrictions on risk prefer-
ences as possible. In other words, just as a characterization of subjective
probability that applied to all expected utility maximizers would be more
desirable than one that applied just to risk-neutral agents, a characterization
that applied to both expected utility and non-expected utility maximizers would
be more desirable still.

The following section describes the expected utility-based characterization of
Savage (1954), which provides the starting point for our own contribution.
Section 3 gives a formal description of probabilistically sophisticated non-
expected utility preferences, and shows how such preferences naturally arise in
situations of delayed resolution of uncertainty. It also shows that neither of the
two most obvious approaches to our topic—(i) postulating all of the Savage
axioms except his expected utility-based “Sure-Thing Principle,” or (ii) applying
the qualitative probability approach to preferences over “bets” —are sufficient
to even imply probabilistic sophistication, much less characterize it. Section 4
shows how dropping the Sure-Thing Principle and strengthening one of the
remaining Savage axioms does provide a characterization of such agents—that
is to say, a choice-theoretic axiomatization of classical subjective probability
which neither assumes nor implies the expected utility hypothesis. Section 5

8 See Machina (1983, 1987), Sugden (1986), Weber and Camerer (1987), Fishburn (1988), and
Karni and Schmeidler (1991) for surveys of the experimental evidence as well as these alternative
models.
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extends the analysis to the case of conditional preferences and beliefs, and
Section 6 gives a discussion of related work and an extension to countably
additive subjective probability. Proofs appear in an Appendix.

2. SAVAGE’S CHARACTERIZATION OF PROBABILISTICALLY SOPHISTICATED
EXPECTED UTILITY MAXIMIZERS

2.1. Savage’s Framework, Axioms, and Theorem

Since the Savage approach does not assume the existence of any extraneous
randomization device, the objects of choice consist of “acts” f(-), g(-), etc.
which assign an outcome to each state of nature. The price of being able to
work with purely subjective uncertainty is that the state space must be infinitely
divisible. Formally, Savage’s setting consists of:

S={...,s,...} aset of states;

&=27={...,A,B,E,...} the set of all events (that is, all subsets
of A);

Z={...,x,...} asetof outcomes or consequences; and

&={...,f(*),8(),...} the set of finite-outcome® acts on .

In addition, an event E is said to be null if any pair of acts which differ only on
E are indifferent. Finally, we write y >z whenever the constant act yielding y
for all se.” is weakly preferred to the constant act yielding z (we will
sometimes refer to this induced relation on 2" by the symbol =, ). Given this,
Savage’s axioms are as follows:'?

AxioM P1 (Ordering): The relation > is complete, reflexive, and transitive.

Axiom P2 (Sure-Thing Principle): For all events E and acts f(-), f*(-), g(+),
and h(-),

>

*(s) ;fseE]

f(s) ifse€E
g(s) ifseE

g(s) ifse¢FE

f*(s) ifs€E|_[f(s) ifseE
h(s) ifseE| |h(s) ifseE]|

2f(-) is said to be a finite-outcome act if its outcome set f(.»)={f(s)|s € #} is finite. For
infinite outcome acts, see our discussion of Axiom P7 as well as footnote 11 below.
Savage did not provide explicit names for his individual axioms. The following names are
intended to be suggestive of their respective functions, or in the case of P4, to distinguish it from our
own, stronger version of this axiom.
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Axiom P3 (Eventwise Monotonicity): For all outcomes x and y, non-null
events E and acts g(+),

x ifseE Y ifseE
—18(8)

g(s) ifs¢E 1fseEE] e x=y.

Axiom P4 (Weak Comparative Probability): For all events A, B, and out-
comes x* > x and y* >y,

x*zfA>x*ifB y*ifA>y*ifB
x if ~A]_ x if ~B = y if~A _[y if~B]'

Axiom P5 (Nondegeneracy): There exist outcomes x and y such that x >y.

Axiom P6 (Small Event Continuity): For any acts f(-) > g(+) and outcome x,
there exists a finite set of events {A,,..., A,} forming a partition of . such that
x ifs €A, x ifs€A;

UQke g(s) ifs€A,; an f(s) ifseA;

foralli,je{1,...,n}.

>g(")

AxioM P7 (Uniform Monotonicity): For all events E and all acts f(-) and
f*C), if
[f*(s) ifse€E] [ x ifseE]
| g(s) ifseEE__(_)_g(s) ifs€E|
for all g(+) and each x € f(E), then
[F*(s) ifseE]
|h(s) ifs€E|
for all h(-).

(f(s) ifs€E]
| h(s) fsEE]

In the above,

f(s) ifse€eE
g(s) ifs¢E

denotes the act that agrees with f(:) over the event E and with g(-) over the
event ~E.

Axiom P1 (ordering) is standard. Axiom P2, the Sure-Thing Principle, states
that if two acts imply different subacts (f*(-) versus f(-)) over an event E, but
the same subact over the complementary event ~ E, the ranking of these acts
will not depend on what this common subact is. This axiom implies that
preferences are separable across mutually exclusive events, which is the key
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property of expected utility preferences, either over objective probability distri-
butions or over purely subjective acts.

Axiom P3 (Eventwise Monotonicity) states that replacing any outcome y on a
non-null event E by a preferred outcome x always leads to a preferred act.
Axiom P4 (Weak Comparative Probability) is crucial for the existence of
subjective probabilities. When x* > x, we can say that the ranking [x* if A4; x if
~A]>=[x* if B; x if ~ B] “reveals” that the individual believes the event A4 to
be at least as likely as the event B. Axiom P3 states that this revealed likelihood
ranking is independent of the specific outcomes used.

Axiom P5 (Nondegeneracy) states that the relation > is not trivial. Axiom P6 -
(Small Event Continuity) states that for any pair of non-indifferent acts and any
outcome x, the set . can be partitioned into small enough events so that
altering either act to equal x on just one of these events is not enough to reverse
their original ranking. For further discussion of the role of this axiom in the
theory of subjective probability, the reader is referred to Savage (1954, pp.
27-43) and Kreps (1988, pp. 122-125). Finally, Axiom P7 (Uniform Monotonic-
ity) states that if, for all g(-),[f*(-) if E; g(-) if ~ E]is weakly preferred to [x
if E;g(-) if ~E] for each outcome x of a subact f(-) over E, then the
individual will weakly prefer [ f*(:) if E;h(-) if ~E]to[f(:)if E;h(-)if ~E]
for all A(-) (and similarly for weakly not preferred). Since the purpcse of this
axiom is to extend the theory to the case of infinite-outcome acts,!! we shall not
invoke it in the sequel.

Given the above axioms, Savage’s result is as follows.

THEOREM (Savage): Axioms P1 through P6 imply that there exists a unique,
finitely additive, non-atomic'? probability measure u(-) on &, and a state-inde-
pendent utility function U(-) on &, such that the individual ranks finite-outcome
acts f(-) on the basis of

P = [UCS6)) -dua(s) = L UG (£ (x),
where {x,,..., x,} is the outcome set of the act f(-).

As seen in the above equation, there are two ways of calculating the value of
the expected utility preference functional Z(f(-)). It can be determined by
integrating over states, weighting the utility of the outcome in each state,
U(f(s)), with respect to the subjective probability measure u(-). Or, it can be
determined by summing over the finite set of outcomes {x,,..., x,} implied by
the act f(-), weighting the utility of each outcome, U(x,), by the subjective
probability that it will occur. This subjective probability is the measure that u(-)
assigns to the set f~(x,) = {s|f(s) =x,}, or in other words, u(f~'(x,)).

1 See Savage (1954, pp. 76-82).
12 We define a probability measure u(:) to be non-atomic if, for any event E with u(E) > 0 and
any a € (0, 1), there exists some event E* CE such that u(E*) =a - u(E).
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This is an extremely important result in the theory of subjective probability.'?
Unlike the approach of Ramsey, it does not posit the principle of expected
utility maximization from the outset, but rather derives it from the axioms. And
unlike Anscombe-Aumann, it does not require any extraneous objective ran-
domization device, but instead derives the individual’s subjective probabilities in
a framework of purely subjective uncertainty. As mentioned above, it will form
the basis for our own extension.

2.2. What Would it Mean Not to be Probabilistically Sophisticated?

Each of the classic choice-theoretic approaches—Ramsey, Anscombe-
Aumann, and Savage—characterizes an individual who assigns well-behaved
subjective probabilities to events, and who makes use of them in ranking
subjectively uncertain acts. In order to appreciate the refutable implications of
this hypothesis of “probabilistic sophistication,” it is worth considering what it
would mean to violate this property.

The most well-known examples of such violations are a class of problems due
to Ellsberg (1961). Consider, for example, an urn containing ninety balls,
identical except for color. You know that exactly thirty of the balls are red. Each
of the remaining sixty balls is either black or yellow, but you do not know the
relative numbers of black and yellow balls (it could be anywhere from 0:60 to
60:0). You are allowed to draw one ball from the urn. Consider the following
four acts (where the act f, yields $100 if you draw a red ball and $0 if you draw
a black or a yellow ball, etc.).

30 60
——— ————
red black yellow
fi $100 $0 $0
fs $0 $100 $0
f3 $100 $0 $100
fa $0 $100 $100

The typical preferences in this example are f, >f, and f, > f;. However,
these preferences are inconsistent with any set of subjective probabilities
{p,, Py, p,} over the events {red, black, yellow}. To see this, note that the
ranking f, > f, implies p, > p,, but the ranking f, > f; implies p, +p, >p, +p,,
which leads to a contradiction. The reader is referred to Ellsberg (1961, pp.
651-653), Chipman (1960, pp. 79-88), Raiffa (1961), Becker and Brownson
(1964), Slovic and Tversky (1974), and MacCrimmon and Larsson (1979, §7,8)
for similar observed violations of probabilistic sophistication.

BSee Savage (1951, 1961, 1967), Hacking (1967), and Shimony (1967) for additional early
discussions of this approach; Kreps (1988, Chs. 8-10) and Fishburn (1982, Chs. 9-12) for modern
expositions of it; and Luce and Suppes (1965) and Fishburn (1981) for surveys of the tremendous
body of research it has inspired.
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The preferences f, > f, and f, > f; in this example also violate the Sure-Thing
Principle, and hence are not compatible with the expected utility hypothesis.
Does this mean that all violations of the Sure-Thing Principle (or in other
words, all violations of expected utility theory) constitute violations of proba-
bilistic sophistication? We shall see that the answer is “no.”*

3. PROBABILISTICALLY SOPHISTICATED NON-EXPECTED UTILITY MAXIMIZERS
3.1. Description and Properties

Our own setting of purely subjective uncertainty (states, events, outcomes,
and acts) is identical to that of Savage as described above. However, since it is
our intention to drop the property of expected utility maximization but retain
the property of probabilistic sophistication, it is useful to offer an equivalent
description of Savage-type preferences in a manner which clearly separates
these two properties:

DEriNiTION: Let Zo(2) ={(xy, py;...5 %, P)Im =1, ™ p,=1, x,€ Z,
p; =0} denote the set of finite-outcome probability distributions over 2" An
individual is said to be a probabilistically sophisticated expected utility maximizer
if there exists a probability measure u(-) on & and an expected utility prefer-
ence functional V(xy,py;...;x,,p,) =X U(x,)-p; on P(Z), such that
their preference relation > over acts can be represented by the preference
functional

P(FC)) =V (x00(F7x1))5 5 %0 0(F(20)))s

where {x,,...,x,} is the outcome set of the act f(-).

Such an individual accordingly uses (or acts as if using) the subjective
probability measure u(-) to determine the probability distribution over conse-
quences implied by any act f(-), and compares alternative acts solely on the
basis of their induced probability distributions over consequences, using an
expected utility preference functional V(-).

Our notion of a probabilistically sophisticated non-expected utility maximizer
differs only in that the preference functional V(x,, p;...; x,,, p,,) over proba-
bility distributions is not (necessarily) expected utility. Accordingly, it is useful
to identify the senses in which non-expected utility preference functionals over
probability distributions differ from expected utility preference functionals, and

A final issue, to which we shall only allude, is that of state-independence in the theory of
subjective probability under purely subjective uncertainty. As is well known, unless preferences are
state-independent, subjective probabilities cannot be uniquely defined (see Arrow (1974) and
Kadane and Winkler (1988) on the implications of this problem for applied decision analysis). In the
present paper we follow Savage by adopting axioms sufficient to imply the existence of state-inde-
pendent preferences, and hence a unique subjective probability measure. See Karni, Schmeidler,
‘and Vind (1983) and Karni (1991) for treatments of this problem in the case of mixed subjective-
objective uncertainty, and Karni and Schmeidler (1992) for a representation of preferences in
Savage’s framework with non-unique subjective probability.
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the senses in which they are Asimilar. The key difference is that any expected
utility preference functional V(x, py;...; X,,, P,,) = LU(x;) - p; will be “linear
in the probabilities,” whereas non-expected utility preference functionals needn’t
be. In other words, non-expected utility preference functionals will typically
violate the Marschak (1950)/Samuelson (1952) “Independence Axiom.”!> The
key similarities are that we shall retain the same monotonicity and continuity
properties as are generically exhibited by expected utility preference function-
als. Since these two concepts appear in our main result, we review them here.

The standard notion of monotonicity for preference functionals over probabil-
ity distributions is monotonicity with respect to first order stochastic dominance.
Although first order stochastic dominance is well-known for the case of univari-
ate distlrﬁibutions, its extension to distributions over arbitrary outcome sets £ is
less so:

DEeFINITION: A distribution P=(x,, py;...; X,,, P,,) is said to first order
stochastically dominate Q =(y,,q;;...; ¥, 4,) With respect to the order >, if

Y p< Y g foralxeZ,

(ilxifx x} (jlyjjx x}

and P is said to strictly first order stochastically dominate Q if the above holds
with strict inequality for some x* € 2.

When there is no ambiguity regarding the order >,, we shall say simply that
P stochastically dominates Q. Given this, our definition of monotonicity for
preference functionals over probability distributions is as follows:

DerinITION: Given an order >, over the outcome set &, V(-) is said to be
monotonic with respect to stochastic dominance if V(P) (>) > V(Q) whenever P
(strictly) stochastically dominates Q.7

The standard notion of continuity for expected utility preferences over
probability distributions is mixture continuity. The A: (1 — A) probability mixture
of the probability distributions P = (x,, py;...; X, Py) and Q =
(¥15935---3Yn4,), Written AP+ (1 —A)-Q, is defined as the distribution

15 Formally, this axiom states that a probability distribution P* is weakly preferred to P if and
only if the mixture A - P* + (1 — A) - Q is weakly preferred to A - P+ (1 —A) - Q for all P*, P, Q and
A €(0,1), where the mixture A - P* + (1 —A)- Q is as defined below.

See Fishburn and Vickson (1978, §2.21) for a discussion of this more general concept of
stochastic dominance.

7 Similarly, we say that a preference relation >, over probability distributions is monotonic with
respect to stochastic dominance if P(>,) >, Q whenever P (strictly) stochastically dominates Q. It
is_important to note that the property of monotonicity over general probability distributions does
not necessarily possess the same normative strength as does monotonicity over univariate distribu-
tions (e.g., wealth lotteries). See Grant (1991) for an extension of our approach to preferences which
are not necessarily monotonic in this sense.
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(X, AP35 % ADs Y1, (1 = A)gys .. 5 ¥,, (1 — A)g,). Given this, we have the
following:

DeriNiTION: V() is said to be mixture continuous if, for any distributions P,
Q, and R in ZY(Z), the sets {A €[0,11/V(A-P+(1-A)-Q)>V(R)} and
{r€[0,1]]lV(A-P+ (1 — 1) Q) < V(R)} are both closed.!®

Given this, we define a probabilistically sophisticated non-expected utility
maximizer as follows:

DeriNiTION: An individual is said to be a probabilistically sophisticated non-
expected utility maximizer if there exists a probability measure u(:) on & and a
non-expected utility preference functional V(x,, p;;...; X, P,) O0 P2
satisfying mixture continuity and monotonicity with respect to stochastic domi-
nance, such that their preference relation > over acts can be represented by
the preference functional

V() = V(xLu(f(x0))5 5 %0 m(f1(%0)))s

where {x,,..., x,} is the outcome set of the act f(-).

Note that this definition (as well as its expected utility counterpart) implies
that preferences are “state-independent,” in that the effect of assigning an
outcome x to an event E depends solely on the resulting contribution w(E) to
the overall probability u(f~'(x)) of obtaining x, rather than on any specific
“state-dependence” between x and E.

For a simple example of probabilistically sophisticated non-expected utility
preferences, let the outcome set be "= {1, 2, 3} and the state space be =10, 1],
and consider an individual whose subjective probability measure -£(-) is
Lebesgue measure'® on [0, 1], and whose preference functional over probability
distributions on 2" is V(p,, Py, p3) =[1+p, P +[3+p,>+[5+p;]?, where
p; = prob (i). This preference functional is clearly mixture continuous, and since
it satisfies )

V(P P25 P3) /9P, < V(Dy,D2,DP3) /9P, < V(P15 P25 P3) /D5

for all (p,, p,, p3), all first order stochastically dominating transfers of probabil-
ity mass from a less preferred outcome to a more preferred outcome will be
strictly preferred. Such an individual will evaluate acts on the basis of the

18 Similarly, we say that a preference relation >, over probability distributions is mixture
continuous if, for any P, Q, and R, the sets {A €[0, 1][':\ ‘P+(1-=A)-Q>,R}and {A €[0,1]]r-P
+0-2)-0= . R} are both closed. Note that if V(-) is mixture continuous in this sense, then
V(P) > V(R) > V(Q) implies that there exists some A € (0,1) such that V(R)=V(A -P+ (1 —1)-Q),
and similarly for the preference relation >,.

Formally, since standard Lebesgue measure is not defined over all subsets of [0,1], we must
either restrict our class of events ¢ in this example to the set of Lebesgue measurable sets, or else
use some finitely-additive extension of Lebesgue measure to the class of all subsets of [0,1] (e.g.,
Savage (1954, p. 41)). This also applies to the measure -#(+) in our examples of Sections 3.2 and 3.3.
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preference functional

V() = [1+L(F(x))) + [3+2(F(x)))

+[5 +j(f‘1(x3))]2.
Note that, as with any probabilistically sophisticated preference functional, the
act f(-) enters only through its implied probabilities £(f~'(x,)) of the respec-
tive outcomes.

What are the key similarities and differences between probabilistically sophis-
ticated expected utility and probabilistically sophisticated non-expected utility
preferences over acts? The fundamental difference is that expected utility
preferences satisfy the Sure-Thing Principle (Axiom P2), whereas non-expected
utility preferences need not.?’ However, just as with non-expected utility prefer-
ences over probability distributions, probabilistically sophisticated non-expected
utility preferences over acts exhibit the same monotonicity and continuity
properties as their expected utility counterpart. The appropriate notion of
monotonicity for preferences over finite-outcome acts is Eventwise Monotonic-
ity (Axiom P3). Since an eventwise dominating act will induce a stochastically
dominating probability distribution over outcomes, monotonicity with respect to
stochastic dominance ensures that probabilistically sophisticated non-expected
utility preferences over acts will be eventwise monotonic. The appropriate
notion of continuity, Savage’s Axiom P6, will also be satisfied by probabilistically
sophisticated non-expected utility preferences over acts, as long as the subjec-
tive probability measure u(-) is non-atomic and the preference functional V()
over probability distributions is mixture continuous.

What about the other Savage axioms? Axiom P1 (Ordering) follows from the
fact that probabilistically sophisticated non-expected utility preferences are
derived from a real-valued preference functional 7(-) over acts. Axiom P5
(Nondegeneracy) follows in any nontrivial instance. For finite-outcome acts,
Axiom P7 (Uniform Monotonicity) also follows from monotonicity with respect
to stochastically dominating probability distributions. To verify Axiom P4 (Weak
Comparative Probability), note that [x* if 4; x if ~A]>=[x* if B; x if ~B]
implies V(x*, u(A); x, u(~A)) > V(x*, u(B); x, u(~ B)) which, given x*>x
and monotonicity with respect to stochastic dominance, implies u(A) > u(B).
Given y* >y, monotonicity accordingly implies that V(y*, u(A); y, u(~A4)) >
V(y*, w(B); y, u(~ B)), which in turn implies that [y* if 4; y if ~A]=[y* if
B; y if ~B].

On the other hand, the hypothesis of probabilistically sophisticated non-
expected utility preferences is contradicted by the typical behavior in the
Ellsberg Paradox. This is to be expected: as noted above, such behavior is simply
inconsistent with the existence of subjective probabilities, whether or not risk
preferences are expected utility.

"2 For example, defining the events 4 =[0,.8), B =[.8,.9), and C =[.9,1), the individual in the
previous paragraph prefers the act {$2 if A4; $2 if B; $2 if C} to {$2 if A; $1 if B; $3 if C}, but
prefers {$3 if A4; $1 if B; $3 if C) to {$3 if A4; $2 if B; $2 if C).
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To sum up: As long as the underlying preference functional over probability
distributions satisfies monotonicity with respect to stochastic dominance and
mixture continuity, probabilistically sophisticated non-expected utility prefer-
ences over acts satisfy eventwise monotonicity, continuity, and all of the Savage
axioms, except the expected utility based Sure-Thing Principle.

3.2. Natural Instances of Probabilistically Sophisticated Non-Expected
Utility Preferences

Although the Savage framework is usually thought of as “timeless,” real-world
situations of decision-making under uncertainty invariably involve at least some
delay between the time a choice must be made and the time the uncertainty is
actually resolved. If a Savage-type individual should happen to have any other
decisions to make during this interim period {(even if they are only consump-
tion /savings decisions), he or she will end up exhibiting probabilistically sophis-
ticated non-expected utility preferences over acts.

To see this, take an individual with von Neumann-Morgenstern utility func-
tion U(x, ) and subjective probability measure u(-), who must choose from a
set of delayed-resolution acts {f(-)}, and whose interim decisions are repre-
sented by the choice of some element a from a set A. His or her expected
utility for a given choice of f(-) and a is

P(F(), @) = [U(f(5),@) "dp(s) = ZU(xi,a@) - u(f'(x))-
1
How will such an individual rank delayed-resolution acts? Since the choice of «

must be made before the state is known, he or she will rank them on the basis of
the induced preference functional

7(f(*))

max [7(7(),@)] = ma| UCxs@) w(77(x)

ZU(xi’ &f(f('))) 'P«(f_l(xi)),
where

&f(f( ) E&P(xl,,u,(f_l(xl));...;x,,,p,(f‘l(xn)))

= argmax ZU(xi,a)‘,U»(f_l(xi)) .

a€A i

Note that the optimal interim decision @;(f(-)) depends upon f(-) only
through its outcomes {x,, ..., x,} and their respective probabilities {u(f~'(x,)),
«..,u(f~x,))). The preference functional #(-) accordingly induces proba-
bilistically sophisticated non-expected utility preferences over acts, with the
subjective probability measure u(-) and non-expected utility preference func-
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tion over probability distributions given by

n
V(%1 P15+ X D) = 1 U(%;,8p( %1, P53 X, B,) ) * P
i=1
Thus, to the extent that real-world decisions involve delayed-resolution uncer-
tainty, even Savage-type individuals will exhibit probabilistically sophisticated
non-expected utility preferences over acts.?!

3.3. Do the Savage Axioms Minus the Sure-Thing Principle Imply
Probabilistic Sophistication?

Since probabilistically sophisticated non-expected utility preferences satisfy
each of the Savage axioms except the Sure-Thing Principle, it is natural to ask
whether these remaining axioms are sufficient to imply probabilistically sophisti-
cation. To show that this is not true, we offer a preference functional over acts
which is not probabilistically sophisticated, but which nevertheless satisfies all
of the Savage axioms except the Sure-Thing Principle.

Let the outcome space be the interval [0,100], let the state space be the
interval [0, 1] with Lebesgue measure .Z(+), and define the non-additive measure

w(-) on [0,1] by
w(4) =3:[L(An 03]+ 3 [L(anG)]"
Note that u(-) satisfies monotonicity with respect to set inclusion, and that

,u,(d))=0, /"'([0’%])=%’ ((3’1]) 3’ and /’L([O’l])=1'

But since

“((3’3 )=% and IL([O’%] U(%’l])=%’
it follows that u(-) is not additive, and hence not a probability measure.
Given the non-additive measure u(-), define the preference functional #(-)
over finite-outcome acts by the Choquet (1953-54) integral (e.g., Schmeidler
(1982, 1989)):

Y(FC) =] u(£1([x,100])) .

Since f(s) > g(s) for all s €[0,1] implies f~([x,100]) 2 g~ '(x,100]) and hence
w(f'([x,100D) > u(g~'(x,100D) for all x €[0,100], #(-) exhibits eventwise
monotonicity. If f(-) is a two-outcome act with outcomes x, <x,, the formula

1 Ope might argue that in this setting the “outcomes” are really the (x, &) pairs and the “acts”
are really the (f(-),a) pairs, so that the preference functional Z(f(-),a)= JU( f(x(s)) a)-du(s)
over such “extended acts” remains expected utility. However this approach requires that the
outcomes and acts be defined to include every interim choice between the choice of f(-) and the
revelation of the state s. As Kreps and Porteus (1979, p. 83) have noted, “the obvious difficulty with
this approach is that such complete models may become overburdened with detail and analytically
intractable.”
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for 7(-) reduces to

7(f(-)) = xw(F 1 ([x 100])) + (% —xy) 'P«(f_l([xz’ 100]))
xp+ (xy—xy) 'N(f_l(xz))-
Consider the following Ellsberg Paradox-type acts:

n

[0,3] 33 G.1
fi 100 0 0
A 0 100 0
s 100 0 100
fa 0 100 100

Applying the above formula for two-outcome acts, we obtain

7(f1) =100-p([0,3]) =333,

7(f,) =100-p((3,5]) = 163,

7(f5) =100-u([0,3] U (3,1]) =50,

(£4) =100-u((3,1]) = 66%.
We thus have f, >f, but f,>f,;, which violates probabilistic sophistication,
since (under the assumption of monotonicity with respect to stochastic domi-
nance) the ranking f, >f, implies that the event [0, 3] must have a strictly
greater probability than (3, 2], whereas the ranking f, > f; implies the opposite.

Nevertheless, the reader may verify that 7(-) satisfies all of the Savage axioms
other than the Sure-Thing Principle.

3.4. Do Probabilistically Sophisticated Betting Preferences Imply
Probabilistic Sophistication?

As mentioned in the Introduction, the so-called “intuitive” or “qualitative”
probability axioms on a comparative likelihood relation >, offer a characteriza-
tion of probabilistically sophisticated beliefs which neither invokes nor implies
the expected utility hypothesis. If we were to derive the relation >, from
preferences over subjectively uncertain acts, and assume that it satisfied all of
the qualitative probability axioms, wouldn’t this lead to a characterization of
probabilistically sophisticated preferences which did not rely upon the expected
utility hypothesis?

More specifically, define “A >,B” if the individual would always weakly
prefer to bet on the event A rather than on the event B, that is, weakly prefers
the act [x if A; y if ~A]to the act [x if B; y if ~ B]for all x >y. Assume that
>, is complete (so that such likelihood rankings are always well-defined) and
that >, satisfies all of the qualitative probability axioms, so that it can be
represented by a probability measure u(-) on events. Will this imply that
preferences over general, many-outcome acts are probabilistically sophisticated?



760 MARK J. MACHINA AND DAVID SCHMEIDLER

Again, the answer is no. To show this, we construct a preference functional
7(f(-)) over acts whose ranking of two-outcome “bets” is consistent with a
well-defined subjective probability distribution over events, but which can ex-
hibit Ellsberg Paradox-type preferences over more general, many-outcome acts.
Let the state space be the interval [0, 1] with Lebesgue measure £(-), let the
outcome space be {0, 1,2}, and define

YN =[5y ds+ | £(5©) (5 )

A7) ['s 1) 8]

This preference function exhibits eventwise monotonicity.?> When restricted to
the class of two-outcome acts (in which case -Z(f~1(0)) - - Z(f~ (1)) - Z(f~'(2)
= 0), it reduces to the formula [}f(s)ds, that is, to the expected value of f(-)
with respect to the uniform measure on [0, 1]. This implies that for any pair of
outcomes x >y from {0, 1,2}, the relation >, derived from preferences over
bets involving these outcomes coincides with the uniform measure on [0, 1].
However, given the set of acts

[0,.305) [.305,.609) [.609,1]
fi 2 1 1
I 1 2 1
A 2 1 0
2 1 2 0

we have 7(f,) = 1.3050, 7(f,) =1.3040, 7(f,;) = .9224, and 7(f,) = .9248, so
that f, > f, yet f, > f;, which violates probabilistic sophistication, since mono-
tonicity with respect to stochastic dominance and f; > f, imply that the event
[0,.305) must have a strictly greater probability than [.305, .609), which (again by
monotonicity) would imply that f,>f,. The intuition is that no matter how
many restrictions we place or preferences over “bets,” these restrictions only
apply to preferences over the set of two-outcome acts, which is not enough to
imply probabilistic sophistication over general, many-outcome acts.

4. A MORE ROBUST CHARACTERIZATION OF SUBJECTIVE PROBABILITY
4.1. The Strong Comparative Probability Axiom

The counterexample of Section 3.3 demonstrated that in the absence of the
Sure-Thing Principle, the Weak Comparative Probability Axiom (Axiom P4) is
not strong enough to ensure probabilistic sophistication, even in the presence of

22 To see this, take any act f(-) and raise its payoff by one unit over some event A4 Cf~(0) or
A cf~1(1). The integral [f(s)ds will rise by .#(A), and if the term in square brackets drops, it will
do so by strictly less than _£(A4), so 7(-) will strictly increase.
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the remaining Savage axioms. In order to characterize probabilistically sophisti-
cated non-expected utility preferences, it is necessary to strengthen the Weak
Comparative Probability Axiom. We thus offer the following axiom:

Axiom P4* (Strong Comparative Probability): For all pairs of disjoint events
A and B, outcomes x* > x and y* >y, and acts g(-) and h(-),

x* ifseA x ifseA
x ifseB > x* ifseB
g(s) ifs¢AUB g(s) ifs€AUB
y¥  ifseA y ifseA
= |y ifs€EB >|[y* ifsEB

h(s) ifs&€AUB h(s) ifs€AUB

The intuition behind this axiom is similar to that of the Weak Comparative
Probability Axiom: any individual exhibiting the upper preference ranking is
revealing A to be at least as likely as B in the case when the relevant outcomes
are x* >x and the complementary event ~ (A4 U B) yields the subact g(-). If
he or she possesses a unique subjective probability distribution over events and
uses it in the evaluation of acts (in other words, if they are probabilistically
sophisticated), he or she must continue to reveal A4 as being at least as likely as
B for any other outcomes y* >y and subact A(-).

Note that none of the events 4, B or ~ (A4 U B) in this axiom are required to
be nonempty. When ~ (A4 U B) is empty, the intuition is as given in the above
paragraph. When B is empty, the axiom follows from Eventwise Monotonicity
(Axiom P3). When A is empty, it follows from Axiom P3 that any B satisfying
the upper preference ranking must be null, which implies the lower preference
ranking. When any two of the events A, B, or ~ (A U B) are empty, the axiom
is trivial.

For the remainder of this paper, we shall use the symbol >, to denote the
revealed likelihood relation implied by the Strong Comparative Probability
Axiom—in other words, we write “A >, B” when the pair of disjoint events 4
and B satisfy

x* ifseAd x ifseA
x if seB > x* if seB
g(s) ifs&AUB g(s) ifse€AUB

for all outcomes x* > x and acts g(-). When A4 and B are not disjoint, we write
“A>,B” if and only if (4 —B)>=,(B —A). The reader may verify that the
Strong Comparative Probability Axiom implies that the relation >, over events
will inherit the properties of completeness, reflexivity, and transitivity”> from
the preference relation > over acts.

23 Below we show that under P4*, A4 >, B is equivalent to [x* on A; x on ~A]>[x* on B; x
on ~ B]for any 4, B and x* >x. Thus A >, B and B>, C implies [x* on 4; x on ~A]>=[x* on
B; x on ~B]x=[x* on C; x on ~ C]which by transitivity of > implies 4 >, C.
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The typical preferences of f; > f, and f, > f; in the Ellsberg Paradox violate
the Strong Comparative Probability Axiom.?* This is to be expected—the
purpose of P4* is to characterize probabilistically sophisticated preferences, and
we have already seen that Ellsberg Paradox-type preferences are not probabilis-
tically sophisticated. It is interesting to note that, although Ellsberg Paradox-type
preferences violate Savage’s Sure-Thing Principle P2, they do not violate his
Weak Comparative Probability Axiom P4.%°

To see that P4* implies Savage’s Weak Comparative Probability Axiom P4,
choose any pair of (not necessarily disjoint) events 4 and B and outcomes
x*>x and y* >y. By equivalent description of acts and P4* we have

x* if A >x* if B
X if ~A| | x if ~B

x* ifs€A—-B x ifs€A—-B
o |* ifseB-4 x* ifs€eB—A
x* ifs€AnNB “|x* ifs€eANnB
x ifse~AN~B X ifse~AN~B
[y* ifs€A—-B y ifs€A—B
ifseB—-A y* ifseB-A
= y* ifs€ANB

y

y* ifs€ANB =
B ifseE~AN~B y ifse~AN~B
[y* if A o y* if B

|y if ~A| |y if ~B|’

which implies the Weak Comparative Probability Axiom.

<

4.2. Comparison with the Sure-Thing Principle

How does the Strong Comparative Probability Axiom differ from the Sure-
Thing Principle? Structurally, the axioms are very similar. The key distinction
between them can be illustrated by comparing the paradoxes of Allais (1953)
and Ellsberg (1961):

Allais Paradox Ellsberg Paradox
#1 #2-#11 #12-#100 red black yellow
a, $imMm $1M $im fi $100 $0 $0
a, $0 $5M $im fa $0 $100 $0
a, $im $imMm $0 fi $100 $0 $100
a; $0 $5M $0 fa $0 $100 $100

241 et A ={red ball}, B = {black ball}, x* =y* = $100, x =y = $0, g(s) = $0, and A(s) = $100.
- B Say the individual believed there were 30 balls of each type, let .Z(-) be the counting measure
over balls, and define the non-additive measure u(+) from _#(-) and the preference functional 71(-)
from u(-) as in Section 3.3. We have seen that this preference functional over acts satisfies the
Weak Comparative Probability Axiom, yet it exhibits the Ellsberg Paradox-type rankings f, > f, and

fa>fs
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The left-hand table illustrates the four choices of the famous Allais Paradox,
converted from their usual probability distribution format into Savage-type acts.
Here, the individual faces an urn of 100 numbered balls, so that, for example,
the act a, yields $1M if ball #1 through #11 is drawn, otherwise $0, which
implies a .11:.89 chance of winning $1M or $0 (where $1M = $1,000,000).26 In
order to highlight their structural similarity with the Ellsberg acts, these acts are
listed in the order a,, a,, a,, and a;.

The Strong Comparative Probability Axiom implies f;>f, if and only if
f3 =f,, and the Sure-Thing Principle implies a, > a, if and only if a, > a,. Both
axioms thus impose some form of “consistency” on preferences across different
pairs of acts. The key distinction is whether this consistency involves beliefs or
preferences. The ranking of a, versus a, reflects both the individual’s beliefs
over the relative likelihoods of the events #1 and #2—#11 as well as his or her
risk preferences: specifically, whether he or she prefers receiving $1M across
both events to the riskier prospect of obtaining possibly $5M, but possibly $0.
The Sure-Thing Principle thus imposes consistency on beliefs and risk prefer-
ences across the pairs {a,,a,} and {a,,a,}, which is why it serves to jointly
characterize probabilistically sophisticated beliefs and expected utility prefer-
ences.

On the other hand, the Strong Comparative Probability Axiom places no
restrictions on preferences over the acts {a,, a,} versus {a,, a,}. It only applies to
pairs of acts that take the more specialized form of {f,, f,} and {f, f,}, which
differ by exchanging the outcomes on a pair of events, in this case, red and
black. But an individual’s ranking of f, and f, reflects only their probabilistic
beliefs, and nothing concerning their risk preferences. Thus, the Strong Compar-
ative Probability Axiom only imposes consistency of beliefs across pairs of acts,
which is why it can characterize probabilistically sophisticated beliefs without
implying the expected utility hypothesis on preferences.

What is the logical relationship between the Sure-Thing Principle and the
Strong Comparative Probability Axiom? Provided the set &~ contains at least
three outcomes, the two axioms are logically independent. The example of
Section 3.1 satisfies the Strong Comparative Probability Axiom but not the
Sure-Thing Principle. For an example of the opposite, consider the outcome set
2'={x, y, z}, the state space /= [0, 1], and define

7(f()) = fU(f(s),s) ds  where
{2,1,2} ifse[0,3),

{U(x,5),U(y,s),U(z,5)} ={{1,2,1} ifsE[%,%),
{9,8,7} ifse(3,1].

26 We represent the Allais Paradox in this manner solely to illustrate the theoretical restrictions
imposed by the Sure-Thing Principle. See MacCrimmon and Larsson (1979), Moskowitz (1974),
Slovic and Tversky (1974), and Keller (1985) for experimental studies of the effect of problem
representation on the actual incidence of Allais-type choices (see also the remarks of Machina
(1982, p. 289 and footnote 30)).
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Since this preference function is additively separable across states, it satisfies
the Sure-Thing Principle. However, since it implies the rankings x>y and
y >z, as well as

(x iftsef0,y)] [y ifse[0,d)]
y 1fse[3,3 >|x 1fs€[3,3 and
LZ 1fse[5,] Lz 1fs€[§, ]
y iftsef0,))] [z ifse[0,d)]
z ifse[,3) <]y ifse[3.3

z ifse(3,1] K 1fs€[3,l]

it does not satisfy the Strong Comparatlve Probablhty Axiom.?’

Although logically independent in the case of three or more outcomes, the
two axioms are in fact equivalent in any world with exactly two outcomes z* > z.
Since we use this fact in the proof of our main result (Theorem 2), it is useful to
demonstrate it here. To see that Strong Comparative Probability implies the
Sure-Thing Principle in such a world, pick any event E and acts f(-), f*(-),
g(+), and hA(-). Since the subacts f*(-) and f(-) over E can be written as
f*¢ )—[z on E;; z on E,; z¥ on E;; z on E,] and f(-)=[z on E;;z* on
E,; z* on E,; z on E,] for some partition {E}, E,, E, E,} of E, we have

*(s) lfseE] [f(s) lfsEE]

-

g(s) ifs¢E (s) ifs€E
[ z* ifseE,| [z if s€E,]
z ifseE, z* if s€E,
s |z* ifs€eE; [>=]z* if se€E,
z if seE, z ifseE,
Lg(s) ifs¢E g(s) ifs¢E
[ z* ifseE,] [z if s€E,]
z ifseE, z* ifseE,
= |z* ifs€E;|x|z* ifs€E;
z ifsek, z ifsekE,
h(s) ifs¢E h(s) ifs&FE
[f*(s) ifse€E] >'f(s) if seE
« —
|A(s) ifsEE| [h(s) ifs€¢E ’

which is the Sure-Thing Principle.

27 Since it is “state-dependent,” this preference function also violates Axioms P3 and P4. As seen
from our Theorem 2, the Sure-Thing Principle does imply the Strong Comparative Probability
Axiom in the presence of all the other Savage axioms.
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To see that the Sure-Thing Principle implies the Strong Comparative Proba-
bility Axiom in such a world, pick any disjoint events 4 and B, outcomes x* > x
and y* >y, and acts g(-) and A(-). Since we have x* =y*=z* and x=y =2,
the Sure-Thing Principle implies

x* ifseAd x ifseAd
x if seB > x* if s€B
g(s) ifseAUB g(s) ifs¢AUB

y* ifseA y ifseAd
= |y if seEB >|y* ifseB
h(s) ifs€AUB h(s) ifs¢€AUB

This equivalence should come as no surprise. In a world with only two
outcomes, all acts consist of two-outcome bets, and all probabilistically sophisti-
cated agents will rank acts solely on the basis of their subjective probability of
the preferred outcome. Since risk preferences play no role, it is impossible to
distinguish expected utility preferences from probabilistically sophisticated
non-expected utility preferences, and the Sure-Thing Principle (which character-
izes the former type of preferences) will be equivalent to the Strong Compara-
tive Probability Axiom (which characterizes the latter).

4.3. Formal Characterization

As mentioned above, our characterization of probabilistic sophistication in
the absence of the expected utility hypothesis involves taking the Savage Axioms
P1-P6, dropping the Sure-Thing Principle P2, and replacing his Weak Compar-
ative Probability Axiom P4 by our Strong Comparative Probability Axiom P4*,

Theorem 1 captures the spirit of this approach by demonstrating that if
preferences satisfy this set of axioms, there exists a subjective probability
measure u(-) over events which represents the revealed likelihood ranking >,
and such that any two acts that imply the same probability distribution over
outcomes will be indifferent.

THEOREM 1: If the preference relation > over &/ satisfies the axioms:
P1—Ordering, P3—Eventwise Monotonicity, P4*—Strong Comparative Proba-
bility, P5—Nondegeneracy, and P6—Small Event Continuity, then there exists a
unique finitely additive, non-atomic probability measure w(+) on & such that p(-)
represents the comparative likelihood relation >, from P4*, and such that for any
pair of acts f(-),g(:) in & with respective outcome sets®® {x,,...,x,} and
(y1,-. 0o v} if u(fU2)) = u(g~X(2)) foreachz € {x,,..., x,} U{yy,..., y,), then
) ~g().

28 Note that the outcome sets of the acts f(:) and g(-) needn’t be strictly identical, since either
act could have outcomes which only occur on sets of zero probability.
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Theorem 2 provides our formal characterization of a probabilistically sophisti-
cated individual, that is, one who possesses a subjective probability measure
u(+) over events and evaluates acts on the basis of a non-expected utility
preference function V'(-) over their implied probability distributions over out-
comes.

THeOREM 2: The following conditions on a preference relation > over &/ are
equivalent .

(1): > satisfies: P1—Ordering, P3—FEuventwise Monotonicity, P4*—Strong
Comparative Probability, P5—Nondegeneracy, P6—Small Event Continuity.

(i) There exists a unique finitely additive, non-atomic probability measure u(-)
on & and a non-constant, mixture continuous preference functional V(P)=
V(X1,P15--23 Xms D) O P(Z") which exhibits monotonicity with respect to
stochastic dominance, such that the relation > over acts can be represented by the
preference functional

7(f()) = V(xl’/""(f_l(xl));~--;xn’#‘(f_l(xn))),

where {(x,,...,x,} is the outcome set of the act f(-).

5. CONDITIONAL PREFERENCES AND CONDITIONAL PROBABILITY

In addition to allowing for the explicit separation of preferences (as modeled
by expected utility theory) from beliefs (as modeled by classical probability
theory), Savage’s characterization also allows for the separation of conditional
preferences (modeled by expected utility) from conditional beliefs (modeled by
conditional probabilities). By ‘“conditional” we mean the individual’s prefer-
ences and beliefs upon learning that a specific event E has occurred. Such
concepts are required if we are to model an agent’s ex ante plans, or ex post
actions, contingent upon the arrival of new information.?® The purpose of this
section is to show that, just as in the unconditional case, the derivation and
separation of conditional risk preferences and conditional probabilistic beliefs
does not require that preferences satisfy the expected utility hypothesis.

5.1. Conditional Preferences over Acts and over Probability Distributions

As before, the difference between our characterization and Savage’s is not in
the modeling of probabilistic beliefs (which is identical in the two characteriza-
tions), but rather in our extension to non-expected utility preferences. Since this
extension carries particular significance for conditional preferences, we begin by
deriving a non-expected utility maximizer’s conditional preferences over acts
and over probability distributions.

" ®E.g., Kreps (1988, Ch. 10). In this paper, we restrict ourselves to the case of ex ante
preferences/plans. See Machina (1989) for a summary of the debate regarding non-expected utility
maximizers’ ex ante versus ex post preferences.
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The concept of conditional preferences over acts is straightforward. Given an
event E € &, let &7 denote the set of finite-outcome subacts over E. Then, for
any finite-outcome subact 4(-) defined over ~ E, define the conditional prefer-
ence relation > |g 4.y on & by

fC) =leny 8(°) if and only if

f(s) ifse€E g(s) ifse€E
h(s) ifs¢E h(s) ifseE|

>

Under the Sure-Thing Principle, the conditional preference relation > |g, 4.
would be independent of the subact 4(-) over ~ E. However, we have seen that
the characteristic feature of non-expected utility preferences over acts is that
they are generally not separable across mutually exclusive events, so that what
might occur in the event ~ E could matter. This dependence across mutually
exclusive events can be seen in the example of induced non-expected utility
preferences over delayed-resolution acts in Section 3.2. Dependence of condi-
tional preferences is, of course, a feature of non-separability over any economic
dimension, be it commodities, time periods, or events.
The derivation of a non-expected utility maximizer’s conditional preference
- functional over probability distributions is analogous. Given a probability p €
(0,1] and a distribution Q =(y,,q;...; ¥,,4,), define the conditional prefer-
ence functional V(- |p; Q) over Z(Z") by

V(Plp;Q)=V(p-P+(1-p)-Q)
or equivalently
V((x15:P15+ 5 X Dol (Y15 915+ -5 Vs )
=V(X1,PD15+ 5 Xs PP Y1, (1= P) 355 Y (1 —p) @)

The expected utility hypothesis—specifically, the Independence Axiom—would
imply that this conditional preference functional over distributions is indepen-
dent of both the probability p and the alternative distribution Q. However, the
characteristic feature of conditional non-expected utility preferences over distri-
butions is that they can depend upon the alternative outcomes {y,...,y,} and
their probabilities {(1 — p)q,,...,(1 — p)g,}. This non-separability is reflected in
empirical phenomena such as the Allais Paradox, the “certainty effect,” the
“common consequence effect,” etc., observed by Allais (1953, 1979), Kahneman
and Tversky (1979), and others.*

5.2. Characterization of Conditional Preferences and Beliefs

Theorem 2 showed how a non-expected utility maximizer’s unconditional
preferences over acts can be represented by means of a subjective probability
distribution w(-) and a non-expected utility preference functional V() over

% See footnote 8 for additional references.
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probability distributions. The following theorem shows that for any non-null
event E and any subact A(-) on ~ E, such an individual’s conditional prefer-
ences over subacts on E can be similarly represented by a subjective probabil-
ity distribution over subsets of E and a preference functional over probabil-
ity distributions. This new probability distribution and preference functional
over distributions are derived from the original u(-) and V(-) in the natural
manner: the new probability distribution will be the conditional distribution of
u(-) given E, and the new preference functional will be the conditional
preference functional V(- |p; @), where p is the probability of E, and Q is the
conditional distribution implied by the subact h(-) over ~E.

THEOREM 3: Assume the preference relation > over & satisfies the conditions
of Theorem 2, so that > can be represented by a subjective probability measure
w(:) on & and a preference functional V(-) over P(Z"). Let E be any event
satisfying u(E) €(0,1), and let h(-) be any finite-outcome subact defined over
~ E with outcome set {z,,..., z;}. Then:

(i): There exists a unique finitely additive, non-atomic probability measure p ()
over subsets of E and a non-constant, mixture continuous preference functional
Vi - \*) over P(Z"), monotonic with respect to stochastic dominance, such
that for any subacts f(-) and g(-) in &7 with respective outcome sets {x, ..., x,}
and {yla“'ays}

) =lene) 8(+) if and only if Ve (f()) = Ve n(8())s

where

7/E,h(~)(f( ) = VE,h(~)(x1’ M'E(f_l(xl)); cees xral-LE(f_l(xr)))~
(ii): The subjective probability measure up(-) and the preference functional
Vi, n- () are given by
wp(A)=wp(A)/u(E) for all A € & such that ACE

and
Ve n(P) =V(PIu(E); Q) forallP e P(X),

where Q = (z,, w(h™(z))/u(~E);...;z;, u(h~ (2, ))/u(~E)) is the condi-
tional probability distribution implied by the subact h(-) conditional on the event
~ E occurring.

6. CONCLUDING REMARKS
6.1. Related Work

Ours is not the only choice-theoretic derivation of subjective probability
outside of the expected utility framework. Gilboa (1985), for example, has
derived conditions for a non-additive measure of the type used in Section 3.3 to
be representable as a monotonic transformation of an additive probability
measure. This result can be applied to Gilboa (1987) to obtain a characteriza-
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tion of probabilistic sophistication which yields the class of non-expected utility
models developed by Quiggin (1982), Segal (1984), and Yaari (1987).

In another line of work, Fishburn (1984; 1988, Ch.9; 1989), Fishburn and
LaValle (1987a, 1987b, 1988), and Sugden (1992) have provided axioms on a
preference relation > over acts which imply a probability measure w(+) on
events and a function ¢(-,-) over pairs of outcomes, satisfying d(x,y)=
—¢(y, x), such that for any acts f(-) and g(-)

f(:)=g(:)  ifand only if

V(£(),8()) = [$(f(5),8(5)) -du(s) >0.

Since the functions 7(-,-) and (-, ) are defined over pairs of acts or
outcomes, such preferences are typically not transitive.>! Intuitively, this is
because the individual’s “valuation” ¢(x, y) of an outcome x can depend upon
the outcome y with which it is being compared. In the special case where
¢(x,y) = U(x) — U(y) for some U(-), we have

F()zg() = [o(f(s),8(s)) - du(s)

= [U(f(5)) “du(s) = [U(2(5)) -du(s) >0,

which is precisely Savage’s model of probabilistically sophisticated expected
utility preferences. This, however, is the only instance where this model will be
transitive.>?

Are such preferences probabilistically sophisticated? An argument due to
Faruk Gul (1989) demonstrates that in general they are not. To see this,
partition ./ into events {E}, E,, E;} such that u(E,)=pu(E,) = u(E;) =1/3.
Since for any x, y, and z, the acts

[xif E;;yif Ey;zif E5] and [y if E;; z if E,; x if E)

imply the same probability distribution over outcomes, probabilistic sophistica-
tion implies they must be indifferent. The definition of #(-,-) and skew
symmetry of ¢(-, ) then imply

3 0(x,y) +3b(y,2) =5 ¢(x,2)

for any x, y, and z. Defining U(x) = ¢(x, y,) for some fixed y,, it follows that
for any x and z

d(x,2) =¢(x,¥0) +6(y0,2) =b(x,¥0) —¢(z,,) =U(x) —U(2).

Accordingly, the only form of this model that satisfies our own definition of

31 (x, y), ¢(y, z), and ¢(z, x) are all positive, for example, we have x >y, y >z, and z > x.
Adding the condition of transitivity to Fishburn’s (1989) axiomatization of this model yields the
Savage axioms, and hence expected utility.
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probabilistic sophistication is the expected utility form

Y(£(:),8(")) = [[U(f(5)) = U(8(5))] -dn(s).

On the other hand, since for any acts f(-) and g(-) with outcome sets
{xy,...,x,} and {y,,..., y,} we can write

Y(£(:),8(+)) = [6(f(s),8(s)) *du(s)
= é .Z:‘,lcb(xi,yj) (7 (x) NeTN(),s

it follows that f(-) and g(-) enter into #(-,-) only through their outcomes
x;,y; and corresponding joint probabilities u(f~'(x,) Ng~'(y;)). This may be
thought of as a weaker form of “probabilistic sophistication” in a world where
individuals do not value outcomes or acts individually, but rather in comparison
with what they would have received had they made a different choice.

6.2. Extension to Countable Additivity

One of the features that our characterization inherits from Savage is that,
while it assigns a subjective probability to every set of states, the subjective
probability measure u(:) is in general only finitely rather than countably
additive.®® In a similar vein, Ramsey (1931) only established finite additivity for
his “degrees of belief,” and Anscombe and Aumann (1963) worked with only a
finite number of subjectively uncertain states. But since many of the fundamen-
tal results of probability theory require the assumption of countable additivity, it
is worthwhile sketching how our characterization could be adapted to obtain a
countably additive subjective probability measure.

As noted by Savage (1954, pp. 40-43), the key issue is the fact that, even for
state spaces as simple as the unit interval, a probability measure cannot be
simultaneously nonatomic, countably additive, and defined over every subset of
states. Accordingly, to characterize countably additive subjective probability, we
must restrict the domain of events to some sufficiently small o-algebra® &’ c &
of subsets of ., and restrict the domain of acts to the set &/’ of finite-out-
come, &’-measurable® functions from . to Z.

Derivations of countably additive subjective probability measures over o-alge-
bras of events have been given by Villegas (1964) and Malmnis (1981, Ch. IV)
for qualitative probability and by Fishburn (1982, pp. 126-134) for expected
utility preferences on acts involving mixed subjective /objective uncertainty. The

0

33 A probability measure u(-) is said to be countably additive if u(U?_,E;) = L7_ u(E;) for any
countable set of disjoint events {E,, E,,...}.
" 34 A collection of sets is said to be a o-algebra if it contains the empty set and is closed under
complementation and countable unions (and hence also countable intersections).
35 A finite-outcome act f(-) is said to be &”-measurable if f~'(x) € & for all x€ Z..
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derivation closest to Savage’s is that of Arrow (1965, Lect. 1; 1970, Ch. 2), who
obtains countable additivity by means of the following axiom (1970, p. 48):

Axiom (Monotone Continuity): Given any acts f(-) > g(+), outcome x, and
sequence of events {E|, E,,...} such that E; ., CE; foralliand N7_,E; is empty,
there exists an i* such that for all i greater than i*

x if seE; x if s€E;
[f(s) ifse~E,.]>g(') and f(')>[g(s) ifse~E,.]'

By adapting our framework and axioms to those of Arrow, dropping his version
of the Sure-Thing Principle,*® and adding an appropriate version of our Strong
Comparative Probability Axiom, we could presumably obtain a joint derivation
of countably additive subjective probability and probabilistically sophisticated
non-expected utility preferences.
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APPENDIX
PROOFS OF THEOREMS

ProOF oF THEOREM 1: Consider a setting {7, &, &, &, >} satisfying Axioms P1, P3, P4*, P5,
and P6. Our proof consists of five steps. In Step 1 we obtain a probability measure uw()on &. In
Step 2 we show that an event E is non-null if and only if #(E)> 0. In Step 3 we show that w()
represents the comparative likelihood relation >, from Axiom P4*. In Step 4 we show that
exchanging the outcomes on any pair of equally likely events leaves the individual indifferent.
Finally, in Step 5 we show that if f(-) and g(-) imply the same probability distribution over
outcomes, they are indifferent.

Step 1 (Derivation of u(-)): By P5 there exist outcomes z* >z in & Consider the setting
(A, &, T*, o*, =*), where 27* ={z*, z}, &/* C & is the set of acts with outcomes in {z*, z},
and =* is the restriction of > to &7*. It is straightforward to verify that P1, P3, P4, P5, and P6
hold over {7, &, Z'*, &/*, =*}. From Section 4.2, we have that P2 also holds in this two-outcome
setting. From Savage’s Theorem, there accordingly exists a unique, finitely additive, non-atomic
probability measure w(-) on & such that for any f(-) and g(-) in &%, f(-)=*g(-) (and hence
£(-) =g(")) if and only if u(f~(z*))>u(g~'(z*)). From Savage (1954, p. 37, Concl. 7) it also
follows that for any P € (X)), there exists an act f(-) € & whose implied probability distribution
over outcomes is P.

Step 2 (E is non-null if and only if u(E) > 0)): The second-last sentence of Step 1 implies that
w(E)> 0 if and only if [z* on E; z on ~E]>[z on E; z on ~ E), which by P3 is equivalent to the
condition that E is non-null with respect to > over the entire set &7.

36 Arrow’s assumption of “Conditional Preference” (1970, p. 49).
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Step 3 (u(-) represents >,): Let A and B be a pair of arbitrary events. It follows from P4*, the
definition of >,, and Step 1 that

z* ifs€A-B

AzZB < |z ifseB-A
z ifs¢AUB

< wp(A-B)>p(B-A),

which, since w(+) is a probability measure, is equivalent to the condition u(A4) > u(B).
Step 4 (Exchanging outcomes on equally likely events leaves the individual indifferent): Let A
and B be a pair of disjoint events satisfying u(A) = u(B), and consider the acts

z ifseA-B
z* ifseB-A4
z ifsgAUB

X ifseA y ifseA
f¢H)=1v ifs€B and g(-)=|=x ifseB
h(s) ifs€AUB h(s) ifsgAUB

From Step 3 we have A >,B and B >, 4 which, by definition of >,, implies f(-) ~ g(-).

Step 5 (Acts f(-) and g( ) that imply the same probability distributions over outcomes are
indifferent): Without loss of generality, we can assume that f(-) and g( ) assign strictly positive
probability to each element of their common outcome set {x,,..., x,, 137 Define G =g 1(J\r ) for
i=1,...,n. We will construct a sequence of acts f(-) = fo(-), fi(- ) f2( ) fumi(), such that ()
is obtained from f;_(-) by exchanging outcomes on equally likely events, so that f;(-) is indifferent
to f;_(-), and such that

fl_l(x1)=G1’

f1(x1) =Gy, f21(x2) =Gy,

f3'(x1) =Gy, f31(x2) =Gy, f3'(x3) =Gs,

fali(x)) =Gy, f2i(x2) =G, i2(x3)=Gs, - filli(x,21) =G,

which implies that f;!,(x,) must also equal G,, so that f,_(-)=g(-).

Construction of f(+) from f,_(-) for i=1,...,n—1:3 We have from the construction that:
@) f;_,(-) is indifferent to f(-); (ii) f;_,(-) implies the same outcome probabilities as f(-), and
hence as g(-); [(iii) f;_,(*) satisfies f;i_}(x,) = Gy,..., fi.i(x;_1) = G;_,]. Since Property (ii) above
implies u(fi_4(x;)) = u(G,), we have

p(G;—fii(x)) = n(fili(x) - Gi).
[Since Property (i) implies that f;_,(-) does not take any of the values x,, X2,-.,X;_1 ON the sets
G,,...,G,,) we have that {G; N f;_}(x)),G; N fi(x;,1),...,G;Nfi(x,)} is a partition of G;, so
that the above equality may be rewritten as

#(Ginfi_—ll(xi+l)) +.“(Ginfi_—11(xi+2)) + o +F'(Ginfi_—ll(xn))

= .u'(fi_—ll(xi) - Gi)a

in other words, the total probability that f;_,(-) assigns to the outcomes x;, ,..., x,, on the set G;
equals the probability that f;_,(-) assigns to the outcome x; off of the set G; (that 1s, to the set
fi4(x)— G)). By the last sentence of Step 1, we can partition f;_ l(x )—G; into sets
{El, |, El,s,..., E}} such that

#(Gi N 1)) = F-( Eii+l) )

u(G; Nfiti(xie2)) = w( El,),

r(GiNfili(xn)) =n(E)-

37 By Step 2, we can achieve this condition by replacing each zero probability outcome in f(-) by
one of its positive probability outcomes, and similarly for g(-).
Statements enclosed in square brackets do not hold or are vacuous for the case i = 1.
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Since f;_{(-) takes on the value x,,, over the set G;Nfi_}(x;, ) and the value x; over the set
E} ., and since these sets are equally probable, it follows from Step 4 that exchanging the outcomes
on these sets will yield an act which is indifferent to f;_(-) and which implies the same probabilities
of each outcome as f;_,(-), and hence as f(-). Exchanging the outcomes x;,, and x; on the sets
G;Nf}(x;.,) and E!,,, and so on, up to the outcomes x, and x, on the sets G; N f;_!}(x,) and
E;, yields the act f;(-) defined by

Xy forse Gy,
[x, for s € G,],

[x;.y forseG;_{],

fi(s)={% for s € G,
Xitq forseE;, |,

i

X, fors€kE,,

fici(s) forse (f_l(xl)U Uf‘l(xi)),

where (i) fi(+) is indifferent to f;_,(-), and hence indifferent to f(-); (ii) f;(-) implies the the same
outcome probabilities as f(-), and hence as g(-); (ii) f(-) satisfies f; '(x) =Gy, [fi '(x) =
Gy,....) fi(x) =G,

Repeating this construction for i =1,...,n — 1 yields an act f,_,(+) ~ f(-) which satisfies

2 (x) =G, fi2i(x)=G, . fili(xao1) =Gy
Since this implies f;1(x,) = G,, f,_{(*) equals the act g(-), so that we have f(-)~g(-). Q.E.D.

Proor ofF TueoreM 2: (i) = (ii): Our proof consists of 6 steps. In Step 1 we define a preference
relation >, over probability distributions induced by the relation > over acts. In Step 2 we show
that >, i monotonic with respect to stochastic dominance. In Step 3 we show that >, satisfies
mixturé continuity. (Our definitions of monotonicity with respect to stochastic dominance and
mixture continuity for a preference relation are given in footnotes 17 and 18.) In Steps 4 and 5 we
construct a preference functional V(-) over probability distributions that represents >, and exhibits
the required properties. In Step 6 we show that the preference functional 7(-) over acts represents
the relation > on 7.

Step 1 (Definition of > /,): Let u(+) be the probability measure derived in Theorem 1. For each
distribution P=(x1, py;.."; X, Pp) In P(X), let Y(P)=y(xy, py;...; X, D) be the set of acts
f(-) which satisfy u(f~x,)=p; for i=1,...,m.* By Theorem 1, all acts in the set
W(xy, Pi;-- -3 X, Ppy) are indifferent. Accordingly, the preference relation > over acts in &
induces a complete, reflexive, and transitive preference relation >, over distributions in Z(2"),
where P* > P if and only if f*(-)>f(-) for all f*(-) € y(P*) and f(-) € y(P). We define the
relations >, and ~ , in the usual manner.

Step 2 (é is monotonic with respect to stochastic dominance): Let P and Q be probability
distributions in £(Z") such that P first order stochastically dominates Q with respect to >,. We
can write the combined support of P and Q as {{z;}%. )/ , where z;; ~z;; for all i and j, and

where zy; <z, '+ <z,. Given this, we can writte P=(-";z;,py; ) and Q=
(52 > i3 " ), where some p; j and g; ; may be zero. Stochastic dominance implies

m ki m ki

Z ZP,‘]’QZ 4ij for m=1,...,n.

i=1j=1 i=1j=1

From the Proof of Theorem 1, there exists an act f(-) which implies the distribution P. By
Axiom P3, we can successively replace each of its outcomes z;; by z;; to obtain the act f()=
[zy; on Fj; zp; on Fy;...;2,, on F,]~f(-), where u(F}) =Tk p; fori=1,...,n.

¥ Note that an act FC)in (xy, pg;.--; Xms D) could have outcomes outside of {x,..., x,,},
provided they only occur on zero probability sets.
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By nonatomicity of u(-) and the above displayed inequality, we can construct a partition
{Gy,...,G,} of  such that u(G;) =Xk ,q;; and UL, F,c U™G; for m=1,..., n. Define the
act §(-)=[z;; on Gy; z5; on G,;...;2, on G,l. R

Since f~(z;)=F,c U:_,G;=£"'z11, 251--., z5y)) for each i, it follows that wherever f()
yields the outcome z;;, £(-) either yields z;; or an outcome strictly less preferred than z;;, which by
repeated application of Axiom P3 implies that f(-) =2(-).

By nonatomicity, we can partition each set G; into sets {Gyy,..., Gy} such that u(G;;) = g;; for
j=1,...,k;. By Axiom P3, we can take the act §(-) and replace z;; by z;; over each set G;;, to
obtain the act g(-)=[...;z;; on Gijs.- 1~ () =f(-) ~ f(-). Since g(+) implies the distribution
(...;2;,q;5...) = Q, we have that P> Q.

If P strictly stochastically dominatés Q, we have Lj_ X%, p,; <E_ E¥ ,qg;; for some re
{1,...,n — 1}. This implies that the set (U}_,G) —(U}_F)=(U]_1G)N (U #_r+1F;) has posi-
tive probability, and hence that there exists a nonnull set on which f(') yields an outcome strictly
preferred to z,, but where 2(-) yields z,; or an outcome strictly less preferred than z,,. By Axiom
P3 this implies f(-) > g(-), so that f(-) >g(-) and hence P>, Q.

Step 3 (=, is mixture continuous): Let P, Q, and R be’ arbitrary probability distributions in
P ). Without loss of generality, we can write P = (2, p1;...; 2, ,) and Q =(z1,455...; Z,, a,)
where z,; < --- <z,. We will demonstrate that the sets A, ={1€[0,1]]A-P+(1-2)-Q > R}
and A_={a€[0,1]|]A-P+(1—-A)-Q <, R} are both open in [0, 1].

Let A* be an arbitrary element of A, . We will show that there exists some &> 0 such that
Ae(* —¢g, A* +£)N[0,1] implies A -P+ (1 —A)-Q >, R. By the proof of Theorem 1, there exist
acts f(-) and g(-) in & which imply the distributions A* - P + (1 —A*) - Q and R respectively. Since
f(-)>g(-), Axiom P6 implies there exists a partition {4, ,..., A, ,,} of - such that [z, if
sE€A,y ; f(s)if s €A, ) g() foreach A, ;€ {Ay1,..., A} I p(fTH(2)) > 0,{A5 1.0, A3 )
must contain some set A% whose intersection with f~'(z,) has positive measure. If u(f~ I(z,))=0,
let A% be any set in {A2,1""7A2,n2)' We thus have [z, if s €4%; f(s) if s €A%5]>g(-), where
either u(A% N f~1(z,) > 0 or else u(f~(z,)) =0.

Applying P6 to the preceding preference ranking, there exists a partition {A31,-., A3 4 3} such
that [z, if s€A5UA;s; f(s) if s&AFUA; 1>g() for each A;;€{A;,,..., 45, )} Asain,
{A3,1,..., A3 ;) must contain some set A% such that [z, if s €A% UAS; f(s)if s € A5 VA% > 2(0),
where either (A% Nf~(z;,)>0 or else u(f !(z5)=0. Proceeding similarly yields sets
{A%,..., A%} such that h(:)=[z, if s€A5U --- UAY; f(9) if s@& AU - UAL]>g("), and for
each i=2,...n, either w(A*Nf'(z,)>0 or else u(f~'(z))=0. The act h(-) implies the
probability distribution H = (zy, py;...; Z,, p,) With H >, R and where for each i =1,...,n, either
(@) p; <u(fUz) —A) <p(f Wz =X -p;+(1 —¥*)-gq,, or else (b) p;=n(f'(z))=0. Pick
£ > 0 so that it is strictly less than (A* - p; + (1 — A*) - ;) — p; for all i = 2,..., n that satisfy condition
(a).

Let A be an arbitrary element of (A* — &, A* + &) N[0,1] and consider the distribution A - P+
A-21)-Q=(z,(A-p;+@A—A)qy);...;2,,(A-p, +(1=21)-g,)). For each index i=2,...,n sat-
isfying condition (a) we have

Api+(1=2)-g; > X p+(1-X)-q;—z" Ip;—ql
> p+(1-2)gq;—& > p;s
and for each i =2,...,n satisfying condition (b) we have
Api+(1-2)q;>0=p;
which implies that the distribution A-P+(1—A)-Q first order stochastically dominates the
distribution H and hence that A-P+ (1 —2A)-Q >, R,so A €A, . This implies that the set A is
open in [0,1]. A similar argument establishes that ‘A _ is open in [0, 1].

Step 4 (Construction of V(-) on a set of the form {P € P(Z')|8; =, P> ,8,} for some X >, x):
(Henceforth we shall use the symbol &, for the degenerate probability distribation (x, 1).) For any P
such that 8, = P> 5, the fact that > , satisfies mixture continuity and monotonicity with respect
to stochastic ‘dominance implies thefe exists a unique Ap€[0,1] such that P~, Ap-8z+
(1—Ap)-3,, in which case define V(P) =Ap (thus V(8;) = 1 and V(8,) = 0). For any distributions
P and Q such that §; Z,P:/(>,)Q Z,8,, e have N

V(P) -8+ (1= V(P))-8,~, P ,(=4)Q~,V(Q) 8+ (1-V(Q)) 5,

which by monotonicity with respect to stochastic dominance implies V(P) > (>)V(Q). From this it
follows that V(P)>(>)V(Q)=P= /,( > )Q. Thus, V(-) represents = . over the set {Pe
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P26z =, P> ,8,}, and clearly inherits the properties of monotonicity with respect to stochastic
dominance and mixture continuity from >,.

Step 5 (Construction of V(-) when thére exist no best and no worst outcome): We will first
construct a sequence of outcomes --:x_, =<, X_; =<, Xg=<, X; <, X,... such that for each x€ 2~
there is a unique integer £ such that x, = x <, x, , ;. By Axiom PS5, there exist outcomes x, <, x.
Define ¢(xy) =0 and £(x,) = 1. For each outcome x >, x;, monotonicity with respect to stochastic
dominance and mixture continuity imply there exists a unique A € (0, 1) such that § x ~a(1—2)-8,
+A-8,, in which case define &(x)=A+1€(1,2). For each x=<_ x,, there exists a unique
A €(0,1) such that 8, ~/,(1 —A):8,, +A-3,, in which case define £(x) =21 —1&(-1,0). Within
each of these cases ana across cases, monotonicity with respect to stochastic dominance ensures that
x* =, x if and only if £(x*)> &(x).

Consider the set &(27) ={&(x)lx € 2} €(—1,2). Since &) is bounded, it possesses a supre-
mum &, and an infimum ;. Since there is no best or worst outcome, ¢(2°) does not contain
either &g, or £;,¢. Accordingly, £(Z°) contains an infinite sequence 1 =¢; <¢, <§;< -+ converg-
ing to &, and an infinite sequence 0=¢,>¢_;>£¢_,> ... converging to £, For all integers
i # 0,1, choosing an outcome x; such that £(x;) = £; yields a sequence ... x_, <, X_; <, Xg <, X1 <,
X5, *+, with the desired property.

For any distribution P € (Z"), Axiom P3 implies that P is weakly less preferred than its most
preferred outcome and weakly preferred to its least preferred outcome, which implies that there
exists a unique integer k& such that &, e P> /8,‘ . This in turn implies that there exists a unique
X €10,1) such that P~, A-3,, ., + = A 5, Define V(P) =k +A €[k, k + 1)

Let P and Q be distributions in #(Z") such that P=,0. If 5, >, P :/‘Q :/Sxk for
some k, then an argument identical to that of Step 4 implies that V(P) > V(Q). If P> /,6 e Tp Q
for some k, then by construction of V(-) we have V(P) >k > V(Q).

Let P and Q be distributions in Z(Z") such that V(P) > V(Q). If k + 1> V(P) > V(Q) > k for
some k, then an argument identical to that of Step 4 implies that P > /Q. If V(P) >k > V(Q) for
some k, then by construction of V(-) we must have P> ,5, >, Q.

Thus, V(-) represents >, over F(Z), and again inherits the properties of monotonicity with
respect to stochastic dominance and mixture continuity from > ,. The construction and representa-
tion proofs in the cases where there is a worst outcome but not a best outcome, or a best outcome
but not a worst outcome, follow easily.

Step 6 (¥(-) represents >): Pick acts f(-),g(-) € &/ with outcome sets {y;,...,y,} and
{z4,...,z;}. By Step 1 we have that f(-) =g(-) if and only if (y, u(f~'(y);...; ¥, u(f~(y,))
= Lz, u(g~(z)));. . .; z5, p(g~1(2,))), which by Steps 4 and 5 is equivalent to

YEC) =V(riuu(fD))s-900(F1(0)))
>V(z,0(87'(21)); -5 25, 0(871(2))) = 7(8())-

(ii) = (i): P1 (Ordering): This follows since there is a real-valued representation of >.

P3 (Eventwise Monotonicity): If x >y, then [x if E; h(s) if ~E]>[y if E; h(s) if ~ E] follows
from monotonicity with respect to stochastic dominance. Conversely, assume f(-) =[x if E; h(s) if
~El>g(-)=[y if E; h(s) if ~E] for some x,y, h(:), and non-null E, but that y > x. Since E is
non-null, it cannot have zero probability. Clearly, f(-) and g(-) imply the same probability of each
outcome other than x or y. Since it is also clear that w(f~1(x)) > u(g~(x)) while u(f~(y)) <
(g~ (y)), monotonicity with respect to stochastic dominance implies that g(-) > f(-), which is a
contradiction.

P4* (Strong Comparative Probability): Pick disjoint events 4 and B, outcomes x* >x and
y* >y, and acts g(-) and h(-) such that g,(-) =[x* if A4; x if B; g(s) if ~(AUB)]=g,(-) =[x if
A; x* if B; g(s)if ~(A UB)). Clearly, g(+) and g,(+) imply the same probability of each outcome
other than x* or x. Since u(g7'(x*)) = u(A4) + u(g~'(x*) — (A UB)) and u(g; '(x*))=pu(B) +
(g~ 1(x*) — (A4 U B)), monotonicity with respect to stochastic dominance implies that u(A4) > u(B).
This fact and a similar argument imply that the act [y* if 4; y if B; h(:) if ~ (A UB)] is weakly
preferred to [y if A; y* if B; h(:) if ~(4 UB)).

P5 (Nondegeneracy): Say all outcomes were indifferent. For arbitrary act f(-) =[x, if E;; x, if
E,;...;x, if E,]€ & and outcome z € &, repeated application of P3 yields f(-) ~[z if E; x, if
Ey..x, if E]J~[zif Ej; z if Ey;...;x, if E,\]J~[z if E;; z if E,;...;z if E,], which implies
that all acts in & are indifferent. But this implies that all probability distributions in Py(2Z") are
indifferent, so V(+) is constant, which is a contradiction.
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P6 (Small Event Continuity): Pick arbitrary acts f(-) > g(-) and outcome x. Let {z,,..., z,,} be
the union of the outcome sets of f(-) and g(-), let P=(zy,py;.--5 2, D,y) and Q=
(21,415 -- -5 2,y 4,,) be their implied probability distributions over outcomes, and let Z and z be the
most and least preferred outcomes in {x}U {z,,..., z,,}. Since §, > , P > . o= /,6,, mixture continu-
ity and monotonicity with respect to stochastic dominance ensure t{ere exists some sufficiently large
integer n such that both V(1 —-(1/n))-P+(1/n)-8,)>V(Q) and V(P)>V((1/n)-6;+
(1—(1/n))- Q). Since u(-) is nonatomic, we can partition each set f~'(z;) N g~'(z;) into n equally
probable events {E; ; ,-.., E; ; ,} (some of these sets, and hence partitions, may be empty). For
k=1,...,n define A, = UL, U E, 4, so that {4,,..., A,} forms a partition of ., and so that
/.L(A,a); 1 /n), w(f~z)—A,)=QA —(1/n)) - p; and p(g~(z;) —A,) =1 — (1 /n)) - g; for each i,
j, and k.

We thus have that, for any k=1,...,n, the act [z if s€A,; f(s) if s&A,] implies the
probability distribution (1/n)-8,+ (1 —(1/n))- P which is strictly preferred to Q, which implies
that [z if s €A4,; f(s)if s € A,]>g(-). Similarly, for any k =1,...,n, the act [z if s€A4,; g(s) if
s & A, ] implies the probability distribution (1/n) -8, + (1 — (1/n)) - Q which is strictly less preferred
than P, which implies that f(-) > [z if s€Ay; f(s)if s €A4,]. Q.E.D.

Proor oF THEOREM 3: Defining ug(-) and Vg ., as in part (ii) of the Theorem, it follows
immediately that wg(-) is non-atomic and that Vg ,.,(+) is mixture continuous over Z(Z") and
exhibits monotonicity with respect to stochastic dominance. Since w(E)> 0, monotonicity with
respect to stochastic dominance implies Vg ,.(8,) > Vg 4.(8,) for any x>y, so Vg () is
non-constant on Zy(2").

For any subact f(-) € & with outcome set {x,,..., x,}, we have

e w((F()) = VE,h(»)(xly#E(f_l(xl));“'§xn#E(f_1(xr)))
= V(xl’“E(f_l(xl));"';xr’f“E(f_l(xr))[/"'(E);
z,m(h™1(20)) /0(~ E); -5 2, w(h™N(21)) /(~ E)),
which, by definition of the conditional preference functional V(P|p; Q), equals
V(xme(F(e0)) - BCEYs o 5, e S7H(5,)) - (E;
z2,0(R7(21))5- 5 2 k(R 7(20)))
=V(xn,n(f1(x))s 5%, 0(F71(x,));
21’#("_1(21));---;Zk,l‘-(h_l(zk)))
= 7 ([f(s) for s € E; h(s) for s€ ~E]).
By definition of the relation > |g (., we have that f(-) > |g ., g(*) if and only if
[f(s)fors€E: h(s) fors€~E]>[g(s)for s €E; h(s)forse ~E],
which is equivalent to
7([f(s) for s€E: h(s) for s ~E]) = 7([g(s) for s € E: h(s) for s € ~E]).
By the above, this is in turn equivalent to the condition
Yo (FC)) Z Vg n-(8(4))- Q.E.D.
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