The "Arms Race" on American Roads: The Effect of SUV's and Pickup Trucks on Traffic Safety Michelle J. White University of California, San Diego, and NBER ### Abstract Drivers have been running an "arms race" on American roads by buying increasingly large vehicles such as SUVs and light trucks. An important reason for the popularity of large vehicles is that families view them as providing better protection to their occupants if a crash occurs. But when families drive large vehicles, they pose an increased danger to occupants of smaller vehicles and to pedestrians, bicyclists and motorcyclists. This paper measures both the internal effect of large vehicles on their own occupants' safety and their external effect on others. The results show that light trucks are extremely deadly. For each one million light trucks that replace cars, between 34 and 93 additional car occupants, pedestrians, bicyclists or motorcyclists are killed per year and the value of the lives lost is between \$242 and \$652 million per year. The safety gain that families obtain for themselves from driving large vehicles comes at a very high cost: for each fatal crash that occupants of large vehicles avoid, at least 4.3 additional fatal crashes involving others occur. © 2003 by Michelle J. White ### The "Arms Race" on American Roads: The Effect of SUV's and Light Trucks on Traffic Safety¹ ### Michelle J. White Drivers have been running an "arms race" on American roads, replacing cars with sport utility vehicles (SUVs) and pickup trucks and then replacing these vehicles with even larger SUVs and even heavier trucks, including the tank-like Hummer. From 1980 to 2000, the proportion of motor vehicles that are SUVs or light or heavy trucks increased from .22 to .39.² An important reason for the popularity of large vehicles is that families view them as providing better protection to their occupants if a crash occurs. But because SUVs and light trucks are taller, heavier and more rigid than cars, they pose an increased danger to occupants of cars and to pedestrians, bicyclists and motorcyclists. Greater height means that when SUVs or light trucks strike cars, they hit car occupants' upper bodies and heads rather than their lower bodies, causing greater injury. And when SUVs and light trucks strike pedestrians, bicyclists or motorcyclists, victims are hit in the body and crushed. In contrast, when cars strike pedestrians, bicyclists, or motorcyclists, victims are usually hit in the legs and thrown onto the car's hood, which is relatively soft. Also while cars are designed with "crumple zones" to absorb the impact of a crash, SUVs and light trucks are much stiffer. They therefore absorb less of the force of the crash and transfer more to cars.³ In this paper, I use micro-level data on crashes to measure both the internal effect of light trucks and SUVs on their own occupants' safety when crashes occur and the _ ¹ I am grateful to Emily Tang for research assistance and to Eli Berman, Roger Gordon, Howard Gruenspecht, Valerie Ramey, Matthew Neidell, Steve Carroll, Bob Reville, the referee, and participants at the 2003 ALEA Conference for very helpful comments. The Institute of Civil Justice at RAND and the NSF Economics Program provided research support. An earlier version of this paper appeared as NBER working paper 9302. ² The figure for 1980 is slightly understated because SUVs were counted as cars in 1980 and as light trucks in 2000. See U.S. Census Bureau, Statistical Abstract of the U.S. 2002 (Table 1062). ³ See Leonard Evans, Car Size and Safety: Results from Analyzing U.S. Accident Data (Working paper, General Motors Research Laboratories 1985), National Highway Traffic Safety Administration, A Collection of Recent Analyses of Vehicle Weight and Safety (DOT HS-807 677, May 1991), National Highway Traffic Safety Administration, The Effect of Decrease in Vehicle Weight on Injury Crash external effect of light trucks and SUVs on occupants of cars, pedestrians, bicyclists and motorcyclists. The internal effect is the increase in safety that light trucks/SUVs provide to their own occupants when crashes occur. The negative external effect is the harm that light trucks/SUVs cause to occupants of cars and to pedestrians, bicyclists, and motorcyclists when crashes occur. The results of the paper show that light trucks are extremely deadly. When drivers shift from cars to light trucks or SUVs, each crash involving fatalities of light truck/SUV occupants that is prevented comes at a cost of at least 4.3 additional crashes involving deaths of car occupants, pedestrians, bicyclists or motorcyclists. The results also suggest that when behavioral changes are taken into account, large vehicles actually endanger their own occupants rather than protecting them. The safety benefit of substituting cars for light trucks and SUVs on the road is found to be similar in magnitude to the benefit of seat belts. Section I of the paper reviews the literature and section II provides a simple model of the external effects of light trucks. Sections III and IV describe the data and the results. Section V examines the effect of a policy change in which one million cars replace light trucks or SUVs. Section VI examines why liability rules and other legal institutions fail to internalize the negative external effects of heavy vehicles. Section VII is the conclusion. ### I. BACKGROUND The effect of vehicle size on traffic safety has long been controversial, with some researchers arguing that larger vehicles increase traffic safety and others arguing the opposite. The controversy dates from the 1970's, when Federal government-mandated increases in fuel economy standards (CAFÉ standards) led automakers to reduce vehicle weight. Crandall and Graham used aggregate U.S. data for the 1970's and 1980's to argue that adoption of the CAFÉ standards and the resulting reduction in vehicle weight caused many additional traffic deaths and serious injuries. ⁴ More recently, Coate and Weights (DOT HS 808 575, January 1997), and Keith Bradsher, High and Mighty: SUVs – The World's Most Dangerous Vehicles and How They Got That Way (2002, ch. 9) for discussion. ⁴ Robert W. Crandall and John D. Graham, The Effect of Fuel Economy Standards on Automobile Safety, XXXII J. of Law & Econ. 97-118 (1989). VanderHoff used state level data for several years in the 1990's to argue that the increase in the proportion of U.S. vehicles that consists of SUVs and light trucks has reduced traffic fatalities.⁵ Other researchers have argued that larger vehicles reduce safety, based on either crash data or tests in which two vehicles are crashed into each other. Meyer and Gomez-Ibanez⁶ discuss evidence from a New York State study which found that, when a small car is involved in a crash with another car that is large rather than small, occupants of the small car are 42% more likely to be seriously injured. Conversely when a large car is involved in a crash with another car that is small rather than large, occupants of the large car are 29% less likely to be seriously injured.⁷ These contradictory views suggest that the overall impact of vehicle weight/size on traffic safety is a mixture of two effects. First, if larger vehicles protect their occupants better in crashes, then an increase in the size of *all* vehicles would increase traffic safety. But, second, vehicle fleets are never homogeneous, particularly if pedestrians, bicyclists and motorcyclists are considered to be "ultra-light" vehicles. This means that when some vehicles increase in size, traffic safety may fall because an increasing proportion of crashes involves vehicles that have different sizes. To illustrate, suppose there are two types of vehicles in a fleet—small versus large. Ten crashes per year occur and all crashes involve randomly chosen pairs of vehicles. Crashes may therefore involve two small vehicles, two large vehicles, or one small and ⁵ See Douglas Coate and James VanderHoff, The Truth about Light Trucks, Regulation, Spring 2001. Because the Crandall-Graham and Coate-VanderHoff studies both use aggregate data over multiple year periods, they encounter the difficulty that changes in mandated safety equipment and practices, such as seatbelts, anti-lock brakes, airbags, strengthened door panels, and laws requiring use of seat belts, occurred over the same period. As a result, the Coate and VanderHoff study may attribute the reduction in fatalities to the rise in the number of SUVs and light trucks when it is actually due to safety improvements. Using micro data on crashes rather than aggregate data makes it possible to separate out these effects. Also see Theodore E. Keeler, Highway Safety, Economic Behavior, and Driving Enforcement," 40 Am. Econ. Rev. 684 (1994). ⁶ John R. Meyer and Jose A. Gomez-Ibanez, Autos, Transit and Cities (1981, p. 264) ⁷ See also Insurance Institute for Highway Safety, Status Report: Crash Compatibility, How Vehicle Type, Weight Affect Outcomes (1998), Hand Joksch, Dawn Massie, and Robert Pickier, Vehicle Aggressivity: Fleet Characterization Using Traffic Collision Data (Working paper, U.S. Department of Transportation, HS 808 679, 1998), Tom Wenzel and Marc Ross, Are SUVs Really Safer than Cars? (Working paper, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Fall 2002) available at http://eetd.lbnl.gov, and Ted Gayer, Motor Vehicle Regulations and the Fatality Risks of Sport-Utility Vehicles, Vans and Pickups (Working paper, Georgetown University, 2002). one large. Suppose the cost per crash involving a small and a large vehicle is \$50, the cost per crash involving two small vehicles is \$45, and the cost per crash involving two large vehicles is \$40. Initially, the fleet consists of all small vehicles, so that total crash costs are \$450/year. But if 10% of small vehicles are replaced by large vehicles, the cost of crashes rises to
\$458.50, because some crashes of two small vehicles are replaced by costlier crashes of one small and one large vehicle. The total cost of crashes is maximized when the fleet consists of 60% small and 40% large vehicles, when it is \$466. If the fleet shifts entirely to large vehicles, then the total cost of crashes falls to \$400, since all crashes involve two large vehicles. This suggests that the effect on safety of an increase in average whicle size could either be positive or negative, depending on fleet composition and the relative costs of different types of crashes. Thus when small cars were substituted for large in response to government-mandated CAFÉ standards, crash costs may have risen because more crashes involved a small and large car rather than two large cars. Similarly, the substitution of SUVs and pickup trucks for cars in recent years may have increased crash costs because more crashes now involve a car and an SUV or pickup, rather than two cars. I discuss these issues further below.⁸ There is also a literature both by economists and engineers on the behavioral response to changes in vehicle characteristics. Sam Peltzman argued that drivers respond to the increased safety that seat belts provide by driving faster. Leonard Evans argued that drivers drive more safely in small cars than in large cars, presumably to compensate for the greater danger they face. 10 ### II. THEORY Suppose a particular driver vehicle may have a two-vehicle crash with a randomly selected other vehicle, including pedestrians, bicyclists or motorcyclists as ultra-small ⁸ In the analysis below, I also consider whether large vehicles are more likely to have single vehicle crashes than small vehicles and whether driving behavior differs systematically by vehicle size. ⁹ Sam Peltzman, The Effects of Automobile Safety Regulation," 83 J. of Pol. Econ. 677 (1975). ¹⁰ Leonard Evans, Accident Involvement Rate and Car Size (Working paper, General Motors Research Laboratories, Warren, MI, 1983), and Leonard Evans, *supra* note 3. "vehicles." Drivers are assumed to choose the size of their vehicles. Suppose a particular driver drives a vehicle of size s and other drivers on average drive vehicles of size s. There are s0 other drivers. The probability of the particular driver having a two-vehicle crash with any other driver is denoted s0, which depends on the size of both the particular driver's vehicle and other drivers' vehicles. Greater size is assumed to increase the probability of crashes, so that s0, s0. In a crash, occupants of the particular driver's vehicle suffer damage of s0, and occupants of the other driver's vehicle suffer damage of s0, when either vehicle is larger, its own damage in a two-vehicle crash is smaller, but damage to the other vehicle is larger, so that s0, s0, and occupants of the other driver's vehicle crash is smaller, but damage to the other vehicle is larger, so that s1, s2, s3, s4, s5, s5, s6. In addition to two-vehicle crashes, single vehicle crashes may occur in which vehicles go off the road or hit a fixed object such as a tree or a highway barrier. Suppose the particular driver's probability of a single vehicle crash is denoted $\mathbf{r}(s)$. Damage to the vehicle's occupants in this type of crash is denoted $\mathbf{d}(s)$. The same terms for other drivers are denoted P(S) and $\Delta(S)$. Larger vehicles are assumed to have higher probabilities of single-vehicle crashes and higher damage in these crashes, so that $\mathbf{r}_s, \mathbf{d}_s, P_s, \Delta_s > 0$. Finally, assume that vehicle size is measured in units costing one dollar each. ¹¹ The social cost of vehicle size is: $$s + NS + Np(s, S)(d(s, S) + D(s, S)) + \mathbf{r}(s)\mathbf{d}(s) + NP(S)\Delta(S)$$ (1) The social cost of vehicle size includes the cost of purchasing larger vehicles plus the expected cost of two-vehicle and single-vehicle crashes. Note that drivers' utility gain from driving larger/taller/more threatening vehicles—which the auto industry refers to as ¹¹ This model extends the standard law and economics model of the choice of care to consider the choice of vehicle size. See Steven Shavell, Economic Analysis of Accident Law (1987), Michelle J. White, An Empirical Test of the Comparative and Contributory Negligence Rules in Accident Law, 20 RAND J. of Econ. 308 (1989), and Aaron S. Edlin, Per-Mile Premiums for Auto Insurance (National Bureau of Economic Research Working Paper 6934, 1999). See Yu-ping Liao and Michelle J. White, No-Fault for Motor Vehicles: An Economic Analysis, 4 Am. Law and Econ. Rev. 258-294 (2002) for a game -theoretic version of the model that focuses on the strategic interaction between the particular driver's care level and that of other drivers. Note that the number of miles driven is treated as fixed. drivers' "reptilian" instinct—is ignored. 12 Also, to keep the model simple, the number of miles driven is treated as fixed. The first order conditions defining optimal vehicle size for the particular driver and other drivers are: $$1 + N(pD_s + p_sD) + (\mathbf{r}_s\mathbf{d} + \mathbf{r}\mathbf{d}_s) + N(pd_s + p_sd) = 0;$$ (2) $$1 + (pd_S + p_S d) + (P\Delta_S + P_S \Delta) + (pD_S + p_S D) = 0;$$ (3) In eq. (2), $N(pD_s + p_sD)$ is the marginal harm to other drivers involved in two-vehicle crashes when the particular driver drives a larger vehicle—the external effect. It must be positive since the particular driver imposes higher damage on other vehicles' occupants by driving a larger vehicle. The next set of terms, $(\mathbf{r}_s\mathbf{d} + \mathbf{r}\mathbf{d}_s) + N(pd_s + p_sd)$, is the marginal benefit to the particular driver from driving a larger vehicle—the internal effect. Of the four terms in the internal effect, three are positive and only one-- Npd_s --is negative. The particular driver incurs higher expected crash damage in single-vehicle crashes and is more likely to be involved in two-vehicle crashes when she drives a larger vehicle, but her damage when she is involved in two-vehicle crashes is smaller. Suppose for the moment that the overall sign of the internal effect is negative, so that the particular driver's own crash costs fall when she drives a larger vehicle. (This issue is investigated in the empirical work below.) In order for eq. (2) to hold as an equality, the negative internal effect must exceed the positive external effect and the combined value of both effects must decline in absolute value from greater than one to less than one as s rises. Assuming that this condition holds for the particular driver, eq. (2) determines an internal solution for the particular driver's optimal vehicle size, s*. However corner solutions are likely to occur. If the internal effect is negative overall and large compared to the external effect at all values of s, then the optimal vehicle size is the largest possible vehicle. Alternately if the internal effect is positive rather than negative overall, then the optimal vehicle size is the smallest possible vehicle. The same types of conditions hold for other drivers' optimal vehicle size. _ ¹² See Bradsher, *supra* note 3, Chapter 6, for discussion. Now consider the particular driver's private cost of vehicle size. Assume for simplicity that drivers always bear their own crash damage and are never liable for other drivers' crash damage. (The effect of alternate liability rules is considered below.) Then the particular driver's expected private cost of vehicle size is s + Npd + rd. Treating other drivers' choice of vehicle size as fixed, the particular driver chooses her vehicle size to satisfy: $$1 + (\mathbf{rd}_s + \mathbf{r}_s \mathbf{d}) + N(pd_s + p_s d) = 0$$ $$\tag{4}$$ Eq. (4) is identical to eq. (2), except that the external effect disappears. Therefore the particular driver chooses her vehicle size so to equate the internal effect to the marginal cost of size. Eq. (4) holds as an equality if the overall internal effect is negative and its absolute value declines from greater than one to less than one as s rises. Assuming that eqs. (2) and (4) both have internal solutions, the particular driver has an incentive to choose an inefficiently large vehicle because she ignores the external costs to other drivers of her vehicle size. Since other drivers face the same distortion, they all drive inefficiently large vehicles. 13 In reality, drivers choose care levels in driving as well as choosing vehicle size, and the model suggests that these choices are related. Suppose the particular driver shifts to a larger vehicle. As a result, her expected crash damage may be lower and, as a result, she may choose a lower care level in driving. 14 But lower care and larger vehicle size increase the particular driver's external effect on other drivers, since both changes raise other drivers' expected crash damage. In the empirical work, I use micro-level data on crashes to estimate the internal and external effects of driving larger vehicles. ### III. DATA ¹³Corner solutions are also likely in this case. If the internal effect is large and negative at all values of s, then the particular driver chooses the largest possible vehicle. In this situation there is no negative externality if the optimal vehicle size is also the largest possible vehicle. Alternately if the internal effect is positive overall or negative but small, there may be no negative externality because both the social and private first order conditions imply that the best choice is the smallest possible vehicle. 14 Evans, supra note 3, provides evidence that drivers of larger vehicles are more likely to be involved in crashes, which suggests that they use less care than drivers of smaller vehicles. III. The dataset is a sample of police-reported motor vehicle crashes produced by the National Highway Traffic Safety Administration General Estimates System (available at http://www-nass.nhtsa.dot.gov/nass/). To my
knowledge, economists have not previously analyzed these data. Detailed information is provided concerning vehicle types of all vehicles involved in each crash, the circumstances of the crash, and the injuries sustained by all persons involved in the crash. I divide vehicles into three categories: cars, light trucks (including SUVs, vans, and pickup trucks), and heavy trucks (including large trucks and buses). Five types of crashes are examined separately: two-vehicle crashes involving at least one car, two-vehicle crashes involving at least one light truck, single vehicle crashes, crashes involving a vehicle hitting a pedestrian or bicyclist, and crashes involving a vehicle and a motorcycle. The data cover the period 1995-2001. ### IV. SPECIFICATION AND RESULTS The basic specification is a logit regression explaining fatalities or serious injuries in particular types of crashes (where serious injuries are defined as disabling or incapacitating). I discuss the results for each type of crash separately. A. Fatalities and serious injuries in two-vehicle crashes involving cars. Define "vehicle one" (v1) to be the car and "vehicle two" (v2) to be the other vehicle. If both vehicles are cars, then one car is chosen randomly to be vehicle one. ¹⁸ The dependent variables are a dummy variable that equals one if one or more occupants of vehicle one were killed in the crash and a dummy variable that equals one if one or more occupants of vehicle one were seriously injured or killed. There are approximately 192,000 two- snowmobiles, van-based school buses, and horses are also omitted. ¹⁵ I follow the government's classification of SUVs, vans and pickups as light trucks. The heavy truck category includes "single unit straight trucks," combination trucks, and medium or heavy motorhomes. ¹⁶ Crashes involving more than two vehicles (about 6.3% of all crashes) and hit and run crashes are omitted, the latter because no information on the driver is available. Crashes involving farm equipment, ¹⁷ Because the data cover crashes involving low damage levels or "possible injury," I ignore issues of sample selection bias that were of concern to authors using data on fatal crashes only. See Steven D. Levitt and Jack Porter, Sample Selection in the Estimation of Air Bag and Seat Belt Effectiveness, 83 Rev. of Econ. and Stat. 603 (2001), for discussion. ¹⁸ This is because the GES tends to report the vehicle in which the most serious harm occurs as vehicle one. vehicle crashes involving cars in the dataset, including 701 with fatalities and 9,800 with serious injuries. The key explanatory variables are two dummy variables for whether vehicle two is a light truck or a heavy truck, where the omitted category is another car. The coefficients of these variables measure the change in the probability of fatalities or serious injuries in vehicle one when vehicle two is a light or heavy truck rather than another car. Since the hypothesis is that occupants of cars are more likely to be injured or killed in crashes if the other vehicle is larger, both variables are predicted to have positive signs. I also include a set of control variables that capture the circumstances of the crash. These include dummy variables for whether the crash occurred in rain, snow, or fog (the omitted category is clear weather), whether the crash occurred in darkness, whether the crash occurred in a medium or large city (the omitted category is a small town or rural area), whether the crash occurred on an interstate highway or a divided highway (the omitted category is a two-way street), and whether the crash occurred on a weekday. I also include separate dummy variables for whether the driver of vehicle one or vehicle two was male, whether the driver of vehicle one or vehicle two was under 21 or over 60 years old, and interaction terms for whether the driver of either vehicle was both male and under 21. Dummy variables are also included for whether the driver of vehicle one or vehicle two was driving more than ten miles per hour above the speed limit and for whether the driver of vehicle one or vehicle two or both was driving negligently (this includes driving when drunk or under the influence of drugs). Separate variables for the number of occupants in each vehicle and for whether the driver of vehicle one wore a seatbelt are included. For several of the variables, there are also additional dummy variables for missing data. Year dummies are included to account for the increasing prevalence of airbags and other safety features over the period (use of seatbelts is controlled for directly.) Weights are used to make the sample representative of all crashes. 19 Summary statistics are shown in table 1, column 3. ¹⁹ The dataset does not include the state in which the accident occurred, so that state dummy variables cannot be used. But the weights are designed to take care of the problem that different states' reporting systems include varying proportions of accidents of particular types. The weights also offset the oversampling of fatal crashes in the dataset. The results of the logit regressions explaining fatalities and serious injuries for occupants of vehicle one are shown in table 1, columns 1 and 2. Standard errors are in parentheses. Both the light truck and heavy truck dummies have the predicted positive signs and are strongly statistically significant in both models. Among the other variables, occupants of vehicle one are more likely to be killed or seriously injured in crashes that occur at night or on weekends, in crashes that occur in cities rather than rural areas, in crashes in which either vehicle's speed was more than 10 miles per hour above the limit, in crashes in which the driver of vehicle one was more than 60 years old or the driver of vehicle two was male, and when vehicle one contained more occupants. Occupants of vehicle one are less likely to be killed or seriously injured if the driver of vehicle one wore a seatbelt. But, surprisingly, the dummies for male driver and for young male driver generally have negative rather than positive signs and the signs of the dummy variables for driving negligently are generally negative. To get a sense of the importance of the v2 variables, table 2, top section, shows the predicted probabilities of fatalities and serious injuries conditional on a crash. ²⁰ When a car is involved in a two-vehicle crash with a light truck, the predicted probability of the car occupants suffering one or more fatalities is .00161, compared to .000997 when the other vehicle is another car. Thus the probability of fatalities for car occupants falls by 38% when the other vehicle is a car rather than a light truck. For serious injuries, the reduction is from .0282 to .0228, or 19%. B. Injuries and fatalities in two-vehicle crashes involving light trucks. In this dataset, "vehicle one" (v1) is the light truck and "vehicle two" (v2) is the other vehicle. If both vehicles involved in the crash are light trucks, then one is randomly chosen to be vehicle one. The key explanatory variables again are dummies for whether vehicle two is a light truck or a heavy truck rather than a car. The predicted signs of the v2 dummies - $^{^{20}}$ The predicted values are calculated by evaluating the relevant logit regression to obtain the predicted probability of fatalities separately for each observation, using the actual values of the explanatory variables. For the predicted probability of fatalities that is labeled as "v2 = light truck" in table 2, I take a weighted average over all observations in which v2 is a light truck. For the predicted probability of fatalities labeled as "v2 = car" in table 2, I take a weighted average over the same set of observations, but change the value of v2 to be a car. This assumes that when light truck drivers shift to driving cars, their demographic characteristics and driving behavior variables remain the same. All other figures in table 2 are calculated using the same procedure, except those labeled "actual distribution of vehicles" which are discussed below. are again positive, since occupants of light trucks are more likely to be killed or injured in two-vehicle crashes if the other vehicle is larger. The control variables are the same as in the previous regressions. The results of the logit regressions are shown in table 3, top panel. Since the results for the control variables are similar to those for the previous dataset, only the coefficients and standard errors of the v2 dummy variables are given. (Summary statistics are given in column 3 of table 3, top panel.) Both v2 variables have positive signs and are strongly statistically significant in both regressions. Table 2, second panel, indicates that if a light truck is involved in a crash with a car rather than another light truck, the probability of fatalities among the light truck occupants falls from .00142 to .000645, or by 55%, and the probability of serious injuries among the light truck occupants falls from .0198 to .0154, or by 22%. C. Injuries and fatalities in crashes involving pedestrians, bicyclists and motorcyclists. The third and fourth datasets consist of crashes involving a vehicle hitting a pedestrian or bicyclist and a vehicle hitting a motorcyclist, respectively. 21 In both datasets, the pedestrian or bicyclist or motorcyclist is "vehicle one" (v1) and the car or truck is "vehicle two" (v2). The key explanatory variables again are dummies for whether vehicle two is a light truck or a heavy truck rather than a car. The hypothesis is that pedestrians/bicyclists and motorcyclists are more likely to be killed or seriously injured when they are struck by light or heavy trucks rather than cars, so that the v2 = light truck and v2 = heavy truck variables are predicted to have positive signs. The control variables are the same as in the previous regressions. Both v2 dummy variables are positive as predicted and strongly statistically significant in all
of the regressions (see table 3, second and third panels). If a light truck rather than a car hits a pedestrian/bicyclist, the probability of fatalities rises from .0181 to .0329, or by 45%, and the probability of serious injuries rises from .205 to .230, or by 11%. Motorcyclists' probability of being killed rises from .0241 to .0543, or by 56%, in _ ²¹ Skateboarders, skaters, and people in wheelchairs and baby carriages are included in the pedestrian/bicyclist dataset. the same circumstances, and their probability of being seriously injured rises from .234 to .316, or by 26%. (See table 2, third and fourth panels.)²² D. Injuries and fatalities in single vehicle crashes. In the last dataset, the dependent variables are dummy variables that equal one if one or more occupants of the vehicle involved in the crash were killed or seriously injured. The key explanatory variables are dummies for whether vehicle one is a light truck or a heavy truck, rather than a car. The hypothesis is that, because larger vehicles are higher and less stable than cars, they are more likely to kill or seriously injure their occupants in single vehicle crashes. The control variables are similar to those in the previous regressions, but there are no variables for vehicle two. The coefficients of the light truck and heavy truck dummies from the logit regressions are given in table 3, bottom panel. The v1 = light truck coefficients are positive and statistically significant in both regressions, but—surprisingly--the v1 = heavy truck coefficients are negative and statistically significant in both. Thus people involved in single vehicle crashes are more likely to be killed or seriously injured if they are driving a light truck rather than a car, but less likely to be killed or seriously injured when the y are driving a heavy truck rather than a car.²³ Table 2, bottom panel, indicates that if a light truck rather than a car is involved in a single-vehicle crash, the probability of fatalities rises from .00710 to .00824, or by 14%, and the probability of serious injuries rises from .0604 to .0637, or by 5%. ### V. EXTERNAL VERSUS INTERNAL EFFECTS OF LARGE VEHICLES Now consider a policy change that causes one million light trucks to be replaced by cars. The policy could be a special tax on gas guzzlers, a tax on purchase or registration of SUVs and pickups, or any of a variety of other measures (see the discussion below). I focus on replacing light rather than heavy trucks with cars, since most SUVs and pickup trucks are used for non-business purposes and therefore could be replaced by cars without loss of economic efficiency. Because the average numbers of cars and light trucks on 13 ²² A dummy variable is included in the motorcycle crash regressions for whether motorcyclists wore helmets. Surprisingly, it is not statistically significant in either regression. U.S. roads during the period of the dataset were 132 million and 53 million, respectively, this change is marginal in the sense that it involves expanding the stock of cars by less than 1% and reducing the stock of light trucks by less than 2%.²⁴ I do the calculations in two ways. First I assume that when light truck drivers shift to cars, their driving behavior remains the same and so their probability of being involved in crashes remains that of light truck drivers. This is realistic if drivers tend to sort across vehicle types depending on their driving behavior, i.e., reckless drivers choose light trucks and careful drivers choose cars. Second I assume that when light truck drivers shift to cars, their driving behavior changes to that of car drivers and their probability of being involved in crashes becomes that of car drivers. This is realistic if driving behavior depends mainly on the type of vehicle driven. (One factor supporting the behavior change assumption is that, because drivers of light trucks sit higher relative to the ground than drivers of cars, they perceive a given speed to be slower and therefore they drive faster--regardless of their individual driving habits.)²⁵ The two assumptions—referred to as "no-behavior-change" and "behavior-change"--are treated as lower and upper bound estimates of the effect of the policy change. Table 4 shows the annual probability of crashes by type of crash and type of vehicle during the period of our data. Relative to cars, light trucks are much more likely to be involved in two-vehicle and single-vehicle crashes, but are equally likely as cars to be involved in crashes involving pedestrians/bicycles and motorcycles. Table 5 shows the results of the policy change for fatal crashes. Each external and internal effect is shown on a separate row and the results under the no-behavioral-change and behavioral-change assumptions are shown in separate columns. Examine the no-behavior-change assumption first. The first external effect is the reduction in the number of two-vehicle crashes involving fatalities of car occupants following the policy change. From table 2, the reduction in the probability of car ²³ This result may reflect the fact that drivers of heavy trucks are professionally trained. ²⁴ The car stock figure is the average number of registered cars in the U.S. over the sample period. The light truck figure is computed by adding up all U.S. sales of light trucks between 1990 and the relevant year and then averaging over the sample years. Data are taken from U.S. Census Bureau, *supra* note 2 (tables 1010 and 1062). ²⁵ At an extreme, passengers in an airplane flying at high altitude perceive their speed as close to zero. See Curtis Rist, Roll Over, Newton: The Design of Sport Utility Vehicles is Enough to Make the Father of Physics Turn in His Grave, 22 Discover 44 (April 2001). occupants being killed in two-vehicle crashes when v2 is a car rather than a light truck is .00161 - .000997 = .000613. From table 4, the probability of a light truck being involved in a two-vehicle crash is .0398 per year and this figure is assumed to remain the same after the policy change. Multiplying these figures together and multiplying the result by 1,000,000, we find that 24 fewer fatal crashes would occur if the policy change were adopted. The next two external effects are the impacts of the policy change on crashes involving vehicles hitting pedestrians/bicyclists and motorcyclists. Following the same procedure, the policy change reduces the number of fatal crashes involving pedestrians/bicyclists and motorcyclists by 10 and 5 per year, respectively. Combining all three external effects, the policy change would reduce the number of fatal crashes involving occupants of cars, pedestrians, bicyclists and motorcyclists by 40 per year. VI. Now turn to the internal effects of the policy change. Because of the change, one million erstwhile light truck drivers become car drivers and experience car occupants' rather than light truck occupants' probabilities of being killed or injured in single- or twovehicle crashes. Consider single-vehicle crashes first. Because light trucks are more dangerous than cars in single vehicle crashes, the policy reduces the number of singlevehicle crashes involving fatalities by (.0103)(.00824-.00710)(1,000,000) or by 12 per year. Now consider two-vehicle crashes. I first use the logit regression for the light truck dataset to predict the average probability of fatalities when a light truck is involved in a two-vehicle crash with a randomly-selected other vehicle, which is .000992. (See the figures for "actual distribution of vehicles" in table 2.) Then I use the logit regression for the car dataset to predict the average probability of fatalities when a car is involved in a two-vehicle crash with a randomly-selected other vehicle, which is .00152. The difference between these two figures is the increase in the probability of a two-vehicle crash being fatal when drivers shift from driving light trucks to driving cars. Multiplying this difference by the probability of light trucks being involved in two-vehicle crashes ²⁶ The first external effect corresponds to the term pd_s in eq. (4) above. The damage measure d is the probability of fatalities conditional on a crash occurring, so that d_s is the change in the probability of fatalities when cars have two-vehicle crashes with other cars rather than light trucks. p is the probability of a light truck having a two-vehicle crash. Because the policy change involves one million light truck drivers shifting to cars, pd_s is multiplied by 1,000,000. The other external effects and the first internal effect are computed using the same procedure. All calculations use the sample weights. and by1,000,000, the result is that the policy change increases the number of fatal crashes by 21 per year. Combining the two internal effects, they imply that when one million light truck drivers shift to cars, they and other occupants of their vehicles experience 9 additional crashes involving fatalities per year. Turning to the overall results, one striking implication is that when drivers choose light trucks rather than cars, the ratio of external to internal effects is 40/9 = 4.3. This means that for each fatal crash involving occupants of their own vehicles that drivers avoid by choosing light trucks, more than 4 additional fatal crashes occur involving car occupants, pedestrians, bicyclists and motorcyclists. In other words, safety gains for those driving light trucks come at an extremely high cost to others. The right hand side of table 5 shows the effects of the policy change under the behavior-change assumption. Specifically I assume that when drivers shift from light trucks to cars, their crash probabilities change from those of light truck drivers to those of car drivers. For the first external effect, this means that the change in the number of crashes involving fatalities becomes $[(.000997 - .00161)(.0398) + (.0274 - .0398)(.00161)](1,000,000) = -44.^{27}$ This figure is nearly twice as
large as the figure of -24 in the no-behavior-change case. Other figures in the right-hand column of table 5 are calculated using the analogous procedure. Both the external and internal effects of the policy change are more favorable in the behavior-change case, i.e., more fatal crashes involving both occupants of the driver's own vehicle and occupants of other vehicles, pedestrians, bicyclists, and motorcyclists are avoided. An important difference between the two sets of results is that the overall internal effect changes sign: from 9 additional fatal crashes to 23 *fewer* fatal crashes. This is because in the behavior-change case, drivers who switch from light trucks to cars become safer, since the reduction in the number of single vehicle crashes more than offsets the extra danger of being involved in a two-vehicle crash with a larger vehicle. [~] ²⁷ The first external effect in the behavior-change case corresponds to $pd_s + p_s d$ in eq. (4) above. The first term is the same as in the no-behavior-change calculations. In the second term, p_s is the change in the probability of two-vehicle crashes when drivers shift from light truck to cars and d is the initial damage level, or the probability of fatalities when cars are involved in two-vehicle crashes with light trucks. The result is multiplied by one million. This result implies that driving a light truck rather than a car provides no safety gain for the light truck occupants—they would be safer driving cars. Overall, the number of fatal crashes avoided as a result of the policy change nearly triples in the behavior-change case: from 30 to 81 per year. Because both the internal and the external effects of the policy change are beneficial in the behavior change case, the ratio of external costs to internal benefits is infinite. To value the benefit of the policy change, I use the fact that each fatal crash involves an average of 1.15 deaths and I take the average value of a life to be \$7 million. ²⁸ This means that value of the policy change is 30*1.15*(\$7 million) = \$242 million per year inthe no-behavior-change case and 81*1.15*(\$7 million) = \$652 million per year in the behavior-change case. Taking the midpoint of this range, the value of the policy change is \$447 per year for each vehicle whose type changes from light truck to car. Now turn to the results in table 6 for serious injury crashes. In the no-behaviorchange case, the policy change avoids 246 crashes involving serious injuries of car occupants, pedestrians, bicyclists and motorcyclists, but it causes 328 additional serious injury crashes of erstwhile light truck occupants. Thus the overall result of the policy change is an increase of 82 serious injury crashes and the ratio of external benefits to internal costs is only .75. But in the behavior-change case, the policy change causes 611 fewer serious injury crashes to occur per year. How do the benefits of reducing the number of light trucks compare to the benefits of other policy changes involving driving? Crandall and Graham²⁹ estimated that the CAFÉ standards of the 1970's caused about 300 additional deaths to occur in traffic crashes per year. In comparison, the policy change analyzed here would save between 34 and 93 lives each year even though it only involves substituting one million cars for light trucks. Levitt and Porter³⁰ found that seat belts save 11,000 lives per year at a total yearly cost of \$513 million and air bags save 2,250 lives per year at a total yearly cost of \$4 billion. If we value each life saved at \$7 million subtract the cost of seat belts/air bags from their benefit, and convert the result to a per vehicle basis, then the net value of ²⁸ W. Kip Viscusi and Joseph E. Aldy, The Value of a Statistical Life: A Critical Review of Market Estimates Throughout the World, 27 J. of Risk and Uncertainty 5 (2003). ²⁹ *Supra* note 4. ³⁰ Supra note 17. seat belts per vehicle per year is \$413 and the net value of air bags per vehicle per year is \$64. The seat belt figure is similar in magnitude to the value of replacing light trucks with cars, which we calculated to be \$447 per vehicle per year at the midpoint of our upper and lower bound estimates.³¹ Overall, the policy change analyzed here generates enormous gains and, because cars are cheaper than light trucks, its costs are negative. ### VI. THE FAILURE OF LIABILITY RULES, INSURANCE, AND TRAFFIC RULES This paper shows that drivers' decisions to drive light trucks rather than cars have extremely large negative external effects and may also have negative internal effects. This section considers whether any of the existing legal institutions—including tort liability, traffic rules, and requirements that vehicle owners purchase liability insurance—internalize these negative effects. Consider tort liability rules first. Tort liability makes injurers liable for victims' damage under certain circumstances and therefore gives drivers an incentive to use additional care in order to reduce the probability and severity of crashes. In theory, liability for damage should fall more heavily on owners of light trucks than cars and this should both discourage drivers from purchasing light trucks and encourage them to use additional care if they do purchase these vehicles. But in practice, tort liability has only weak incentive effects. One problem is that liability for damage in the traffic context is generally based on negligence, so that drivers are only liable if their care level falls below the negligence standard. An optimal negligence standard would require that light truck drivers take more care than car drivers, since the cost of care is the same for both types of vehicles but light trucks cause greater damage. A related problem is that negligence rules encourage a higher-than-optimal level of driving activity, because drivers escape liability for damage in crashes as long as their care level in driving exceeds the negligence standard. Drivers therefore have an incentive to shift from cars to light trucks because _ ³¹ Note that the figures for the net value per vehicle of seat belts and air bags are for all vehicles, while the figure for the value of substituting cars for light trucks is a marginal value. If additional cars were substituted for light trucks, then the marginal value would eventually fall as the vehicle fleet became mostly they do not bear the cost of the additional crashes they cause, as long as their driving meets the negligence standard. The first problem could be solved and the second could be mitigated by raising the negligence standard for light trucks drivers above that for car drivers. For example, lower speed limits could set for light trucks than cars, similar to the lower speed limits that are sometimes posted for heavy trucks on freeways. But the tort system in fact applies the same standard of care to drivers of light trucks as drivers of cars. Another problem with the tort liability system is that many states in the U.S. use no-fault systems, rather than negligence rules, to determine liability in motor vehicle crashes.³² In states with no-fault, the liability system does not penalize drivers of large/heavy vehicles at all for causing higher damage. In fact, drivers of cars are at a disadvantage under no-fault, since they suffer more damage in crashes and bear these costs themselves. Now consider traffic rules, which impose monetary fines, required attendance at traffic school, license suspension, or other penalties on drivers who violate traffic rules. Traffic rules suffer from the same shortcoming as liability rules, since the same standard of driving behavior and the same penalties are imposed on drivers of both light trucks and cars. They therefore do not discourage drivers from shifting to light trucks. Finally consider liability insurance. Most states require vehicle owners to purchase liability insurance, so that the insurer rather than the driver pays compensation for damage to victims in crashes when the insured driver is liable. Because many drivers are judgment-proof, requiring that drivers purchase liability insurance increases the probability that crash victims will actually be able to collect when they are legally entitled to do so. Also, insured drivers have an incentive to take care in driving even though their insurance companies pay damages, because insurance companies charge higher premiums when their expected liability is higher. These factors suggest that owners of light trucks should pay higher liability insurance premiums than owners of cars, both because they are involved in more crashes and because their vehicles do more ³² As of 1995, fifteen states in the U.S. used some version of no-fault for traffic crashes. See Liao and White, *supra* note 11, for an analysis of no-fault liability rules in the motor vehicle accident context. cars. In these calculations, the stock of vehicles in 1997 is assumed to be 185 million, the figure used to construct the crash probabilities in table 4. ³² As of 1995, fifteen states in the U.S. used some version of no-fault for traffic crashes. See Liao and damage when crashes occur. But again the reality is different. Because the negligence and no-fault liability systems often allow drivers to escape liability for damage they cause, owners of light trucks do not necessarily pay higher insurance premiums. Another factor that affects insurance rates is that most states require drivers to purchase only a small amount of liability coverage. Five states do not require drivers to purchase liability insurance at all, one state requires drivers to purchase only \$10,000 of coverage, and the most common minimum coverage requirement is only \$25,000. 33 Since the damage in fatal and serious injury crashes is far higher, this means that drivers rarely pay for all of the damage their vehicles cause in high damage crashes. Limited coverage requirements reduce insurance companies' incentive to set
higher premiums for larger vehicles, because the higher damage that these vehicles cause often exceeds the coverage limit. Another problem is that up to 30 percent of drivers in some states are uninsured. When drivers purchase liability insurance, they typically buy additional coverage for their own damage if they are involved in a crash with an uninsured driver. The cost of uninsured drivers' coverage is higher for drivers of cars than drivers of light trucks and this factor tends to raise the relative cost of liability insurance for cars.³⁴ These considerations suggest that the negative external effects of large vehicles are not internalized by existing liability rules, traffic rules or liability insurance. Would any of the reforms that have been proposed recently be effective in internalizing the negative external effects of heavy vehicles? One recently proposed reform, called "pay-at-the-pump" involves bundling liability insurance with gasoline purchases, so that all drivers would pay a fixed amount per gallon of gasoline for liability insurance.³⁵ The pay-at-the-pump proposal has the advantage of forcing all drivers to purchase liability insurance and - ³³ The states that do not require owners of vehicles to purchase liability insurance are NH, TN, SC, VA and WI. The dollar figures are the required amount of insurance coverage for bodily injury to a single person injured in a crash (higher limits apply if there are multiple victims in a single crash). These figures are taken from www.insure.com/auto/minimum.html. ³⁴ Insurance companies follow widely differing practices concerning pricing of liability insurance by type of vehicle. State Farm and GE Auto Insurance charge owners of pickups, SUV's and large vans less for liability coverage, but Allstate and the Progressive Insurance Group charge owners of these vehicles more. See Joseph B. Treaster, Leading Auto Insurer to Cut Rates for Drivers of the Biggest Vehicles, New York Times, Nov. 28, 2000, Joseph B. Treaster and Keith Bradsher, 2 Insurers Raising Liability Coverage on Bigger Vehicles, New York Times, Dec. 2, 2000, and Car Insurance for Less, 67 Consumer Reports 19, October 2002. Bradsher, *supra* note 3, chapter 10, argues that insurance companies are loath to raise rates on SUV owners because they are more affluent and politically well-connected than owners of cars. ³⁵ See Edlin, supra note 11, for discussion. it also charges owners of SUVs and light trucks more for liability insurance per mile of driving than owners of cars, since the former get lower gas mileage. The results presented here suggest that the proposal would be beneficial because it would align the cost of insurance more closely with external safety effects. Another recently proposed reform involves imposing strict liability on manufactures of SUVs and pickup trucks—but not cars--for the external harm they cause in crashes.³⁶ Other reforms that would improve incentives include raising minimum required levels of liability coverage and replacing no-fault with fault-based liability systems. Other policies that could be used to discourage people from buying light trucks and SUVs include special excise taxes on the purchase of these vehicles, higher registration fees and tighter gas mileage standards for these vehicles, freeway tolls based on vehicle size, and higher gasoline taxes generally. All of these policies are in use in Europe, where fewer light trucks are seen. ### VII. CONCLUSION U.S. traffic deaths totaled 42,815 in 2002, the highest figure since 1990. Although widespread use of seat belts, campaigns against drunk driving, and adoption of safety equipment such as airbags and anti-lock brakes caused traffic deaths to fall in the 1970's and 1980's, the number of traffic deaths remained constant during the 1990's and has been rising since 1998. This is at least in part due to the increasing heterogeneity of the U.S. vehicle fleet. As of 2001 there were 77 million light trucks on the road compared to 134 million cars, so that a large fraction of crashes involves light trucks hitting smaller vehicles, pedestrians, bicyclists, or motorcyclists. The results of this study show that light trucks are extremely deadly. For each 1 million light trucks that replace cars, between 34 and 93 additional car occupants, pedestrians, bicyclists or motorcyclists are killed each year in traffic crashes, depending on whether driving behavior is assumed to remain constant or change. The value of the lost lives alone is between \$242 and \$652 per year for each light truck that replaces a car. One reason that drivers purchase light trucks is that they think they and their families will be safer in crashes. But for each _ ³⁶ See Howard Latin and Bobby Kasolas, Bad Designs, Lethal Products: The Duty to Protect Other Motorists Against SUV Collision Risks," 82 *Boston U.L.Rev.* 1161 (2002) for discussion. crash involving deaths of their own occupants that light trucks prevent, they cause at least 4 additional fatal crashes involving occupants of cars, pedestrians, bicyclists or motorcyclists. Table 1: Results of Logit Regressions Explaining Fatalities and Serious Injuries to Car Occupants in Two Vehicle Crashes | | Fatalities | Serious injuries | Summary statistics | |-------------------------|---------------|------------------|--------------------| | V2 = light truck | .486 (.131) | .228 (.0288) | .445 (.497) | | V2 = heavy truck | 1.598 (.1450) | .668 (.0454) | .0589 (.235) | | Medium city | 1.22 (.228) | .0702 (.0417) | .116 (.320) | | Large city | .847 (.130) | .381 (.0314) | .350 (.477) | | Seatbelt (v1) | -2.56 (.117) | -1.56 (.0382) | .825 (.380) | | Rain | .070 (.160) | 102 (.0433) | .121 (.326) | | Snow | 489 (.320) | 293 (.106) | .0273 (.163) | | Fog | 1.39 (.416) | .424 (.176) | .0038 (.0617) | | Dark | .561 (.114) | .316 (.0317) | .193 (.395) | | Weekday | 174 (.127) | 157 (.0318) | .784 (.411) | | Negligent (v1) | -2.23 (.198) | 223 (.0346) | .283 (.451) | | Negligent (v2) | -1.23 (.175) | .0538 (.0331) | .278 (.448) | | Negligent (v1&v2) | 1.24 (.697) | .379 (.0724) | .0352 (.184) | | Age < 21 (v1) | 054 (.206) | 0992 (.0477) | .183 (.387) | | Age < 21 (v2) | 083 (.334) | .0913 (.0611) | .150 (.357) | | Age $> 60 \text{ (v1)}$ | 1.05 (.122) | .334 (.0381) | .121 (.326) | | Age $> 60 \text{ (v2)}$ | 548 (.208) | .176 (.0428) | .0990 (.299) | | Divided hwy | .0551 (.123) | .251 (.030) | .239 (.426) | | Interstate hwy | .123 (.178) | 375 (.0559) | .0480 (.214) | | Male driver (v1) | .0841 (.115) | 209 (.0291) | .507 (.500) | | Male driver (v2) | .270 (.134) | .125 (.0319) | .633 (.482) | | Young male (v1) | 0584 (.275) | 157 (.0705) | .0948 (.293) | | Young male (v2) | 234 (.403) | 133 (.0767) | .0919 (.289) | | Speed > 10 mph | 1.89 (.304) | 1.43 (.132) | .0025 (.0501) | | above limit (v1) | | | | | Speed > 10 mph | 1.17 (.475) | 1.09 (.154) | .0021 (.0462) | | above limit (v2) | | | | | Occupants (v1) | .318 (.0447) | .252 (.0127) | 1.45 (.834) | | Occupants (v2) | .0299 (.0258) | .00945 (.0108) | 1.44 (.960) | | Intercept | -5.10 (.309) | -2.34 (.0737) | | | Year dummies? | Yes | Yes | | | N | 188,423 | 188,423 | | | pseudo R ² | .1817 | .0822 | | | Mean value of | .00152(.0390) | .0252(.157) | | | dependent variable | | | | Note: The dataset consists of all two-vehicle crashes involving at least one car. Table 2: Predicted Probabilities of Fatalities and Serious Injuries in Crashes of Different Types Two vehicle crashes involving a car (v1 = car): | | Probability of | Probability of serious | |--------------------------------------|-------------------|------------------------| | | fatalities in v1: | injuries in v1: | | v2 = car | .000997 | .0228 | | v2 = light truck | .00161 | .0282 | | v2 = actual distribution of vehicles | .00152 | .0254 | Two vehicle crashes involving a light truck (v1= light truck): | | Probability of | Probability of serious | |--------------------------------------|-------------------|------------------------| | | fatalities in v1: | injuries in v1: | | v2 = car | .000645 | .0154 | | v2 = light truck | .00142 | .0198 | | v2 = actual distribution of vehicles | .000992 | .0163 | Crashes involving a pedestrian/bicyclist and a vehicle (v1 = pedestrian or bicyclist): | | Probability of | Probability of serious | |------------------|-------------------|------------------------| | | fatalities in v1: | injuries in v1: | | v2 = car | .0181 | .205 | | v2 = light truck | .0329 | .230 | Crashes involving a motorcyclist and a vehicle (v1 = motorcycle): | | Probability of | Probability of serious | |------------------|-------------------|------------------------| | | fatalities in v1: | injuries in v1: | | v2 = car | .0241 | .234 | | v2 = light truck | .0543 | .316 | Single vehicle crashes: | | Probability of Probability of ser | | | |------------------|-----------------------------------|-----------------|--| | | fatalities in v1: | injuries in v1: | | | v1 = car | .00710 | .0604 | | | v1 = light truck | .00824 | .0637 | | Note: The predicted values are calculated by evaluating the relevant logit regression to obtain the predicted probability of fatalities separately for each observation, using the actual values of the explanatory variables. For the predicted probability of fatalities labeled as "v2 = light truck," I take a weighted average over all observations in which v2 is a light truck. For the predicted probability labeled as "v2 = car," I take a weighted average over the light truck observations, but change the value of v2 to be a car. For the predicted probability of fatalities labeled as "v2 = actual distribution of vehicles," I take a weighted overage over all observations. Table 3: Results of Logit Regressions Explaining Fatalities and Serious Injuries (Coefficients of vehicle type variables only) ### Two vehicle crashes involving light trucks: | | Fatalities | Serious injuries | Summary statistics | |--------------------|------------------|------------------
--------------------| | v2 = light truck | 0.805 (0.224) | 0.266 (.055) | 0.193 (0.395) | | v2 = heavy truck | 2.11 (0.222) | 1.07 (0.069) | 0.042 (0.200) | | Mean value of dep. | 0.00103 (0.0321) | 0.0163 (0.127) | | | variable | | | | | Number of obs. | 106,000 | 106,000 | | ### Pedestrian/Bicyclist crashes: | | Fatalities | Serious injuries | Summary statistics | |--------------------|----------------|------------------|--------------------| | v2 = light truck | 0.681 (0.120) | 0.162(0.053) | 0.266 (0.442) | | v2 = heavy truck | 1.29(.244) | 0.368 (0.147) | 0.0251 (0.156) | | Mean value of dep. | 0.0230 (0.150) | 0.208 (0.406) | | | variable | | | | | Number of obs. | 19,300 | 19,300 | | ### Motorcyclist crashes: | | Fatalitie s | Serious injuries | Summary statistics | |--------------------|----------------|------------------|--------------------| | v2 = light truck | 0.916 (0.308) | 0.445(0.111) | 0.268 (0.443) | | v2 = heavy truck | 1.86(0.442) | 0.893 (0.301) | 0.0282 (0.166) | | Mean value of dep. | 0.0216 (0.145) | 0.245 (0.430) | | | variable | | | | | Number of obs. | 3,900 | 3,900 | | ### Single vehicle crashes: | | Fatalities | Serious injuries | Summary statistics | |--------------------|------------------|------------------|--------------------| | v1 = light truck | 0.161 (0.0825) | 0.0658 (0.0306) | 0.323 (0.468) | | v1 = heavy truck | -0.533 (0.272) | -0.455 (0.0798) | 0.0604 (0.238) | | Mean value of dep. | 0.00654 (0.0806) | 0.0573 (0.232) | | | variable | | | | | Number of obs. | 95,000 | 95,000 | | Note: Results are taken from logit regressions explaining fatal and serious injury crashes in the light truck two vehicle crash dataset, single vehicle crash dataset, pedestrian/bicyclist crash dataset, and motorcycle crash dataset. Only the coefficients of the light truck and heavy truck variables are shown. Figures for number of observations are unweighted. Table 4: Probability of Crashes per Year by Type of Vehicle and Type of Crash, 1995-2001 | | Cars | Light trucks | Percent difference | |--------------------------------------|---------|--------------|--------------------| | Two-vehicle crashes | .0274 | .0398 | 45% | | Single-vehicle crashes | .00788 | .0103 | 31% | | Vehicle hitting pedestrian/bicyclist | .000741 | .000698 | -6% | | Vehicle hitting motorcycle | .000174 | .000170 | -2% | Notes: These figures are the average number of crashes per year by the particular type of vehicle during 1995-2001 divided by the total stock of vehicles of that type. Figures on number of crashes are taken from the GES dataset. The source for the stock of vehicles is discussed in the text. 26 Table 5: External and Internal Effects of Replacing One Million Light Trucks with Cars: Fatal Crashes | | Change in number of crashes involving fatalities | | |--|--|---------------| | | No behavioral | Behavioral | | | change | change | | External effects | | | | Decrease in number of two-vehicle crashes per year | -24 | -44 | | involving deaths of car occupants | | | | Decrease in number of crashes per year involving | -10 | -9 | | deaths of pedestrians or bicyclists | | | | Decrease in number of crashes per year involving | -5 | -5 | | deaths of motorcyclists | | | | Total external effects | -40 | -58 | | | | | | Internal effects | | | | Decrease in number of crashes per year involving | -12 | -32 | | deaths of light truck occupants in single-vehicle | | | | crashes | | | | Increase in the number of two-vehicle crashes per year | +21 | +9 | | involving deaths of light truck occupants | | | | Total internal effects | +9 | -23 | | | | | | External plus internal effects | -30 | -81 | | Ratio of external effects to internal effects | 4.3 | infinite | | Value of the policy change per year | \$242 million | \$652 million | Note: The calculations with no behavioral change assume that when one million light truck drivers shift to cars, the number of crashes of each type that they are involved per year in remains constant. The calculations with behavioral change assume that when one million light truck drivers shift to cars, the number of crashes of each type that they are involved in per year changes to the number that car drivers are involved in. # Table 6: External and Internal Effects of Replacing One Million Light Trucks with Cars: Serious Injury Crashes | | Change in number of crashes involving serious injuries | | |---|--|------------| | | No | Behavioral | | | behavioral | change | | | change | | | External effects | | | | Decrease in number of two-vehicle crashes per year | -215 | -563 | | involving serious injuries of car occupants | | | | Decrease in number of crashes per year involving serious | -17 | -7 | | injuries of pedestrians or bicyclists | | | | Decrease in number of crashes per year involving serious | -14 | -13 | | injuries of motorcyclists | | | | Total external effects | -246 | -583 | | | | | | Internal effects | | | | Decrease in number of crashes per year involving serious | -34 | -189 | | injuries of light truck occupants in single-vehicle crashes | | | | Increase in the number of two-vehicle crashes per year | +362 | +161 | | involving serious injuries of light truck occupants | | | | Total internal effects | +328 | -28 | | | | | | External plus internal effects | +82 | -611 | | Ratio of external effects to internal effects | .75 | infinite | Note: The calculations with no behavioral change assume that when one million light truck drivers shift to cars, the number of crashes of each type that they are involved per year in remains constant. The calculations with behavioral change assume that when one million light truck drivers shift to cars, the number of crashes of each type that they are involved in per year changes to the number that car drivers are involved in. ### **Bibliography** "Car Insurance for Less," Consumer Reports, vol. 67:10, October 2002, pp. 19-24. Bradsher, Keith, *High and Mighty: SUVs – The World's Most Dangerous Vehicles and How They Got That Way.* New York: PublicAffairs, 2002. Coate, Douglas, and James VanderHoff (2001), "The Truth about Light Trucks," *Regulation*, Spring 2001. Crandall, Robert W., and John D. Graham (1989), "The Effect of Fuel Economy Standards on Automobile Safety," XXXII *J. of Law & Econ.*, pp. 97-118. Edlin, Aaron S. (1999), "Per-Mile Premiums for Auto Insurance," National Bureau of Economic Research Working Paper 6934. Evans, Leonard (1983), "Accident Involvement Rate and Car Size. Working paper: General Motors Research Laboratories, Warren, MI. Evans, Leonard (1985), "Car Size and Safety: Results from Analyzing U.S. Accident Data. Working paper: General Motors Research Laboratories. Gayer, Ted (2002), "Motor Vehicle Regulations and the Fatality Risks of Sport-Utility Vehicles, Vans and Pickups." Working paper, Georgetown University. Insurance Institute for Highway Safety (1998), "Status Report: Crash Compatibility, How Vehicle Type, Weight Affect Outcomes." Joksch, Hand, Dawn Massie, and Robert Pickier (1998), "Vehicle Aggressivity: Fleet Characterization Using Traffic Collision Data," DOT HS 808 679. Keeler, Theodore E. (1994), "Highway Safety, Economic Behavior, and Driving Enforcement," 40 *American Economic Review*, pp. 684-693. Latin, Howard, and Bobby Kasolas (2002), "Bad Designs, Lethal Products: The Duty to Protect Other Motorists Against SUV Collision Risks," 82 *Boston University Law Review*, pp. 1161-1229. Levitt, Steven D., and Jack Porter (2001), "Sample Selection in the Estimation of Air Bag and Seat Belt Effectiveness." 83 *Review of Econ. and Stat.*, pp. 603-15. Liao, Yu-ping, and Michelle J. White (2002), "No-Fault for Motor Vehicles: An Economic Analysis," 4 *Am. Law and Econ. Rev.*, pp. 258-294 (2002). Meyer, John R., and Jose A.Gomez-Ibanez (1981), *Autos, Transit and Cities*. Cambridge: Harvard University Press. National Highway Traffic Safety Administration (1991), A Collection of Recent Analyses of Vehicle Weight and Safety (DOT HS-807 677, May 1991), National Highway Traffic Safety Administration (1997), *The Effect of Decrease in Vehicle Weight on Injury Crash Weights* (DOT HS 808 575, January 1997). Peltzman, Sam (1975), "The Effects of Automobile Safety Regulation," 83 *J. of Pol. Econ.*, pp. 677-725. Rist, Curtis (2001), "Roll Over, Newton: The Design of Sport Utility Vehicles is Enough to Make the Father of Physics Turn in His Grave," 22 *Discover*, pp. 44-49, April. Shavell, Steven (1987), *Economic Analysis of Accident Law*. Cambridge: Harvard University Press. Treaster, Joseph B. (2002), "Leading Auto Insurer to Cut Rates for Drivers of the Biggest Vehicles," *New York Times*, Nov. 28, 2000. Treaster, Joseph B., and Keith Bradsher (2002), "2 Insurers Raising Liability Coverage on Bigger Vehicles," *New York Times*, Dec. 2, 2000. Viscusi, W. Kip, and Joseph E. Aldy (2003), "The Value of a Statistical Life: A Critical Review of Market Estimates Throughout the World." 20 *Journal of Risk and Uncertainty* 5 (2003). Wenzel, Tom, and Marc Ross, "Are SUVs Really Safer than Cars?" Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Fall 2002, available at http://eetd.lbnl.gov. White, Michelle J. (1989), "An Empirical Test of the Comparative and Contributory Negligence Rules in Accident Law," 20 *RAND Journal of Economics*, pp. 308-330.