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Housing, Adjustment Costs, and Macro Dynamics 

 

ABSTRACT 

  
 
 When utility depends on a single, frictionlessly adjustable consumption good, the 
household’s willingness to substitute consumption intertemporally is solely determined by the 
curvature of the utility function.  When the utility specification is generalized from one good to 
two, however, the curvature parameter then specifies the curvature of the utility function with 
respect to a composite good.  If both goods are frictionlessly adjustable, then each of the 
individual goods will all have the same dynamics, and the intuition from the one-good case  -- 
that the elasticity of intertemporal substitution is determined solely by the curvature parameter -- 
remains valid.  In this paper, however, the two goods are interpreted as housing services and 
non-housing goods.  Nonhousing consumption can be adjusted frictionlessly, but housing 
services are subject to a nonconvex adjustment cost. The paper explores the dynamic behavior of 
nondurable consumption by solving numerically for the optimal level of nonhousing 
consumption, conditional on an assumed path for housing consumption and for the marginal 
utility of wealth.  The results indicate that the intertemporal behavior of nonhousing consumption 
depends crucially on the intratemporal substitutability of the two goods as well as the curvature 
of the utility function with respect to the composite good.   
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Section 1:  Introduction 

 When a change in the household’s stock of housing (and thus its consumption of housing 

services) is subject to a nonconvex adjustment cost, the effect of the adjustment cost on the 

consumption of housing services is conceptually straightforward and easy to identify in 

household level data.  Given that adjusting the consumption of housing services by moving from 

one residence to another requires substantial costs in terms of time and effort, in addition to any 

direct pecuniary costs for moving services or real estate commissions, changes in the 

consumption of housing services will occur infrequently.   

 Because modeling the dynamics of consumption of housing services is greatly 

complicated by the adjustment costs on housing, the vast majority of macro models abstract from 

housing altogether and instead focus on the determination of nondurable consumption, or 

nonhousing consumption.  In the case of nondurable consumption, the assumption of costless 

adjustment is much more plausible.  In narrowing the consumption concept to nondurable 

consumption, however, these models are implicitly assuming that the household’s utility function 

is separable between nondurable consumption and consumption of housing services. 

 It seems unlikely, a priori, that the utility function is exactly separable in housing and 

nonhousing consumption.  Nevertheless, unless models based on a more general nonseparable 

utility function generate some important insights or dramatic improvements in the model, one 

could argue that the assumption of separability should be maintained, given the degree to which 

it simplifies the analysis. 

In previous papers, Flavin and Nakagawa (2008) and Flavin and Yamashita (2010), I 

have argued that when an otherwise completely standard model of the lifetime 

consumption/saving and portfolio allocation problem is altered by introducing two elements – 1) 

a utility function that depends nonseparably on housing and on nondurable consumption, and 2) 
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a nonconvex adjustment cost on housing – the more general model does indeed offer some new 

insights and provide a better fit to the data.  

 In the previous papers, I have proposed a generalized version of the standard 

macro/finance model of the household’s lifetime optimization problem that incorporates the 

housing in its dual role as both an argument of the utility function and as an asset.  The model is 

as follows:  The household chooses the optimal level of housing, holdings of financial assets, and 

the level of nonhousing consumption in a continuous time setting.  Adjustment of the quantity of 

housing requires the payment of a nonconvex adjustment cost, while nondurable consumption 

and financial assets can be adjusted frictionlessly.  Because of the adjustment cost on housing, 

the solution to the general problem has a recursive structure:  at each moment, the household 

considers whether or not to sell the house, pay the adjustment cost, and choose a new quantity of 

housing.  Most of the time, it is not optimal to incur the adjustment cost.  Having decided not to 

sell the house at that instant, the household then chooses the optimal level of nonhousing 

consumption and the optimal holdings of financial assets conditional on the current level of 

housing. When, very infrequently, it is optimal to sell the house, the household optimally 

chooses the size of the new house.   

 Flavin and Yamashita (2010) explore the implications of the housing model for portfolio 

allocation.  In order to model the household’s portfolio constraints in a realistic manner, these 

papers assume that the family holds nonnegative amounts of the stocks, bonds, and the riskless 

asset (Treasury bills), and can borrow only in the form of a mortgage.  Further, the maximum 

amount borrowed in the form of a mortgage is limited by the value of the house.  The paper 

shows that the portfolio allocation decision can be treated as a well-defined subproblem within 

the household’s overall intertemporal optimization problem.  Under the assumptions of the 
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model1, the optimal portfolio is the outcome of a constrained mean-variance optimization 

problem, with the constraints reflecting the housing collateral constraint on the amount of 

borrowing, and the assumption of nonnegative holdings of financial assets other than the 

mortgage.  While the model is designed to assess the portfolio decision of a homeowner, it 

nevertheless applies to renters as a special case. That is, renters and homeowners both derive 

utility from their consumption of housing services; likewise, renters and homeowners both 

choose a portfolio allocation that maximize a function of the mean and variance of the portfolio 

return subject to nonnegativity and collateral constraints.  For a renter, the collateral constraint 

simply says that no borrowing in the form of a mortgage is allowed.  

 The implications of the housing model for the elasticity of  intertemporal substitution 

(EIS) of nonhousing consumption are examined in Flavin and Nakagawa (2008).  A basic feature 

of the standard, frictionless, one-good model (that is, the standard model without housing)) is the 

tight link between risk aversion and intertemporal substitution.  In contrast to the standard 

frictionless model, Flavin and Nakagawa (2008) shows that the EIS of nonhousing consumption  

is not necessarily equal to the reciprocal of the degree of relative risk aversion in the housing 

model.  The current paper further pursues the implications of the housing model for nonhousing 

consumption by looking explicitly at the implied dynamic behavior of nonhousing consumption 

for a range of assumptions on the utility function.  As with the implications for portfolio 

allocation, the model applies equally well to homeowners and to renters.  In both cases, the 

argument of the utility function is the flow of housing services consumed by the household in a 

given period; whether the household owns or rent simply determines the manner in which the 

housing services are financed.  In terms of the implications of the model for the dynamics of 

nonhousing consumption, it is not the physical durability of the house that matters.  Instead, the 
                                                      
1 Normality of asset returns is one of the assumptions of the model. 
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crucial aspect of housing that determines the effect on the dynamics of nonhousing consumption 

is the fact that adjusting the consumption of housing services entails a nonconvex, or lumpy, 

adjustment cost.   Since renters, like homeowners, incur a nonconvex adjustment cost in order to 

change their consumption of housing services, the implications of the model for the dynamics of 

nonhousing consumption applies to both renters and homeowners. 

 In particular, the previous paper shows that the standard model, augmented only by 

assuming that the utility function is nonseparable and that housing is subject to a nonconvex 

adjustment cost, can explain both the smoothness (that is, lack of volatility) of nonhousing 

consumption and a low elasticity of intertemporal substitution (EIS) without invoking either 

habit persistence or an implausibly high degree of curvature of the utility function.  

 My objective in this paper is to explore the implications of the more general model in 

order to characterize the effect of the adjustment cost on housing on 1) the dynamics of 

nondurable consumption, and 2) the joint time series behavior of nondurable consumption and 

the consumption of housing services.  To anticipate the eventual result, it turns out that the 

dynamic, or intertemporal, stochastic behavior of nondurable consumption depends crucially on 

the degree of intratemporal substitutability of nondurables and housing in a given period.  

More generally, I argue that there is an essential interaction between the household’s 

preferences regarding the substitutability of goods within a period, and the household’s 

preferences regarding the substitutability of goods across time.  Because of this interaction, I 

argue that, for the same reason that our understanding of the dynamic (intertemporal) behavior of 

consumption is not complete without a specification of the household’s preferences on 

intratemporal substitution, neither is our understanding of intratemporal substitution complete 

without specification of preferences regarding intertemporal substitution. 
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 In order to build my case that there is an essential interaction between the intratemporal 

and intertemporal dimension of the household’s allocation problem, I start by investigating the 

determinants of intratemporal substitution in an intertemporal setting in Section 2.  This 

discussion will provide support and intuition for the results in Section 3, which considers the 

effect of intratemporal preferences on the intertemporal, or dynamic, behavior of consumption. 

 

Section 2:  Intratemporal Substitution in an Intertemporal Setting 

 Once we relax the assumption of separability, a natural specification of the within-period 

utility function is:  

(1)    𝑈 =
(𝐶𝛼 + 𝛾𝐻𝛼)

1−𝜌
𝛼

1 − 𝜌
               𝛼 ≤ 1  ,   𝜌 ≥ 0  ,𝜌 ≠ 1 

Here C denotes nondurable (or nonhousing) consumption, which is assumed costlessly 

adjustable.  Aside from nondurable consumption, current period utility depends on the flow of 

housing services.  The flow of housing services is assumed to be proportional to the stock of 

housing, H, and current period utility can therefore be written as a function of C and H. 

 An alternative, equivalent, parameterization of the utility function in equation (1) is 

(1′)    𝑈 =
�𝐶1−

1
𝜎 + 𝛾𝐻1−1𝜎�

1−𝜌
1−1𝜎

1 − 𝜌
             𝜎 > 0  ,   𝜌 ≥ 0  ,𝜌 ≠ 1 

While I will work with the parameterization in equation (1), one can, of course, always map the 

results into the parameterization in (1’) by using  𝜎 = 1
1−𝛼

 . 

Assume  that the household maximizes a utility function specified over four goods: 

(2)    𝑈 = (1 − 𝜌)−1(𝐶1𝛼 + 𝛾𝐻1𝛼)
1−𝜌
𝛼 + 𝛽(1 − 𝜌)−1(𝐶2𝛼 + 𝛾𝐻2𝛼)

1−𝜌
𝛼            
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The choice of notation and the asymmetry between the treatment of the (𝐶1,𝐻1) pair of goods 

and the (𝐶2,𝐻2) pair of goods immediately suggests a two period problem with two distinct 

physical goods.  Nevertheless, the preference specification in equation (2) could equally well 

apply to a one-period problem with four distinct physical goods.  While our primary interest is in 

characterizing the intratemporal substitution of goods in an intertemporal setting, the atemporal, 

or one-period, interpretation of the preference specification will occasionally be invoked in order 

to provide intuition.   

 In a previous paper, I suggested that a pair of goods be classified as either complements 

or substitutes on the basis of the sign of the cross derivative of the utility function.  A criterion 

based on the cross derivative seems intuitive:  if an increase in the quantity of good 1 increases 

the marginal utility of good 2, it seems natural to think of the two goods as complements.  

Likewise, if an increase in the quantity of good 1 reduces the marginal utility of good 2, the two 

goods can logically be considered substitutes.  For utility functions of the form of equation (2), 

the sign of the cross derivative depends on all of the parameters of the utility function.  In 

particular, 

(3) sign � 𝜕2𝑈
𝜕𝐶1𝜕𝐻1

� = sign [𝛾(1 − 𝜌 − 𝛼)] = sign (1 − 𝜌 − 𝛼)  

where the last inequality follows from the assumption that 𝛾 > 0.  Under this criterion, the two 

goods would be complements if 1 − 𝛼 > 𝜌 and substitutes if 1 − 𝛼 < 𝜌.   

 Other authors have taken issue with the classification of goods as complements or 

substitutes based on the cross derivative of the utility function.  For example, Piazzesi, Schneider 

and Tuzel (2007) in their influential paper on the role of housing in asset pricing, use the utility 

function parameterized as in equation (1’), but argue that the intratemporal substitutability of 
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goods depends only on the parameter 𝜎 (or, equivalently, 𝛼): 2 

“We use standard Hicksian language here:  two goods are substitutes if and only if 
𝜎 > 1.  This property can be inferred from data on relative prices and quantities, and has 
nothing to do with the agent’s intertemporal concern for smoothing consumption.  Some  
papers refer to 𝑢12 > 0 [a positive cross derivative] as the case in which numeraire and 
shelter are ‘substitutes’ while 𝑢12 < 0 is the case in which these goods are 
“complements.”  We refrain from this language here, since the second derivative of the 
utility function captures both intertemporal and intratemporal tradeoffs.” 
 

There is, of course, no great difficulty that arises when different authors use different 

terminology as long as the terms are clearly defined.  However, in explaining their criterion for 

distinguishing substitutes from complements, Piazzesi et al. seem to argue that the household’s 

behavior regarding intratemporal substitution of goods and its behavior in terms of intertemporal 

substitution are distinct phenomena, governed by different parameters.  This view – that 

preferences regarding intratemporal substitution are governed by a single parameter (𝜎 or 𝛼, 

depending on the parameterization) and preferences regarding intertemporal substitution are 

governed by a different parameter (𝜌 ) – is  common in the literature.   

In this paper, I argue that both the intratemporal substitutability of the two goods and the 

intertemporal substitutability of either of the goods depend on an interaction of both parameters; 

one cannot disentangle the two aspects of behavior in the way that Piazzesi et al. suggest.  In this 

section I start by showing that the intratemporal behavior of two goods (𝐶1 and 𝐻1)  in equation 

(2)) is not determined by 𝛼 [or 𝜎] alone, but instead depends of the value of  𝛼 relative to 𝜌.  The 

interaction is a two-way street; in the next section, I argue that the dynamic, or intertemporal, 

behavior of nondurable consumption also depends on both 𝛼 and 𝜌. 

Consider a setting with no uncertainty.  Households maximize utility (equation (2)) 

subject to a budget constraint: 

                                                      
2 Piazzesi, et al (2007), p 537. 
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(4)    𝑃1𝐶𝐶1 + 𝑃1𝐻𝐻1 + 𝑃2𝐶𝐶2 + 𝑃2𝐻𝐻2 = 𝑊 

Under the intertemporal interpretation of the problem, all four quantities are purchased 

simultaneously in period 1; the period two prices are the prices paid in period 1 for delivery of 𝐶2 

and 𝐻2 in period 2.   

Using 𝜆 to denote the Lagrange multiplier on the budget constraint, the four first order 

conditions are: 

(5)    (𝐶1𝛼 + 𝛾𝐻1𝛼)
1−𝜌−𝛼

𝛼 𝐶1𝛼−1      = 𝑃1𝐶𝜆    

(6)   𝛾(𝐶1𝛼 + 𝛾𝐻1𝛼)
1−𝜌−𝛼

𝛼 𝐻1𝛼−1   = 𝑃1𝐻𝜆 

(7)    𝛽(𝐶2𝛼 + 𝛾𝐻2𝛼)
1−𝜌−𝛼

𝛼 𝐶2𝛼−1  = 𝑃2𝐶𝜆 

(8)    𝛽𝛾(𝐶2𝛼 + 𝛾𝐻2𝛼)
1−𝜌−𝛼

𝛼 𝐻2𝛼−1 = 𝑃2𝐻𝜆  

 Consider an increase in 𝑃1𝐶  , with the prices of the three other goods held constant, which 

will cause the household’s demand for 𝐶1 to fall.  I am interested in investigating whether, in 

response to a change in the price of 𝐶1, the consumption of 𝐻1 moves in the same direction as 𝐶1 

(that is, falls), or moves in the opposite direction as 𝐶1. 

 Before turning to the four-good system, consider the nature of intratemporal substitution 

in the one-period, two-good case, which can be represented by the utility function in equation (2) 

when 𝛽 = 0.  Eliminating the Lagrange multiplier by taking the ratio of the first order conditions 

in equations (5) and (6), and rearranging implies: 

(9)    
𝐶1
𝐻1

= �
𝛾𝑃1𝐶

𝑃1𝐻
�

1
𝛼−1

 

  or, in logs, 

(10)    ln �
𝐶1
𝐻1
� = �

1
𝛼 − 1

� ln 𝛾 + �
1

𝛼 − 1
� ln�

𝑃1𝐶

𝑃1𝐻
� 
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Differentiating with respect to 𝑃1𝐶 , and rearranging, gives: 

(11)    

𝜕 �𝐶1𝐻1
�

𝜕𝑃1𝐶

�𝐶1𝐻1
�

𝑃1𝐶

=
1

𝛼 − 1
                       (which equals –σ  in the parameterization (1′)) 

Equation (11) tells us that the percent change in the ratio, or relative quantities, of 𝐶1 and 𝐻1 in 

response to a 1% change in 𝑃1𝐶  is  (𝛼 − 1)−1 .  However, knowing that the ratio of 𝐶1 to 𝐻1 

declines when 𝑃1𝐶  rises does not, by itself, establish that the quantity of  𝐻1 consumed rises as the 

quantity  𝐶1 falls.  A decline in the ratio of 𝐶1 to 𝐻1 is also consistent with the quantities of the 

two goods moving in the same direction, as long as the magnitude of the decline in 𝐻1 is smaller 

than the decline in 𝐶1 .   

      To determine the effect of the change in price on the level of 𝐻1, as opposed to the ratio 

of 𝐶1 to 𝐻1, it is necessary to introduce a restriction on the levels of the optimal quantities of the 

two goods – either a budget constraint or a level curve of the utility function.  The algebra is 

simplified by using the level curve of the utility function and thus considering the income 

compensated demand system.  Assuming that the household achieves the same level of utility 

before and after the price change, the effect of the change in 𝑃1𝐶  on the levels of 𝐶1 to 𝐻1 is 

constrained by: 

(12)    0 =
𝜕𝑈
𝜕𝐶1

𝜕𝐶1
𝜕𝑃1𝐶

+
𝜕𝑈
𝜕𝐻1

𝜕𝐻1
𝜕𝑃1𝐶

 

which of course implies: 

(13)    
𝜕𝐻1
𝜕𝑃1𝐶

=   −�

𝜕𝑈
𝜕𝐶1
𝜕𝑈
𝜕𝐻1

�
𝜕𝐶1
𝜕𝑃1𝐶

 

 Since the marginal utility of each good is strictly positive, the term in square brackets is 
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positive for all permissible values of the parameters of the utility function.  Based on equation 

(13), we can conclude that the quantities of the two goods move in opposite directions in 

response to a change in 𝑃1𝐶 .  Further, note that in deriving both the expression for the elasticity, 

equation (11), and the expression showing that the quantities of the two goods move in opposite 

directions, equation (13), the marginal utilities of the two goods appear only in the form of the 

ratio of marginal utilities.  Since only the ratio of marginal utilities of the two goods matters, the 

parameter governing the curvature of the utility function with respect to the composite good (𝜌) 

cancels out.  That is, the effect of an increase in 𝑃1𝐶  on the optimal quantities of 𝐶1 and  𝐻1 

depends only on the parameters that determine the aggregation of 𝐶1 and 𝐻1 into the composite 

good (𝛼 and 𝛾) and is independent of the parameter governing the curvature of the utility 

function with respect to the composite good (𝜌).  In the one-period problem, the curvature 

parameter, 𝜌, would determine the household’s degree of risk aversion in a setting with 

uncertainty, but plays no role in determining the intratemporal behavior of the two goods in 

response to a change in the relative price. 

 When we return to the 4-good case (i.e., the utility function in equation (2) with 

0 < 𝛽 < 1), some but not all of the equations for the 2-good case continue to hold.  The first 

order conditions for 𝐶1 and 𝐻1, equations (5) and (6), still generate equations (9), (10), and (11); 

thus we can conclude that the ratio of 𝐶1 and 𝐻1 falls in response to an increase in 𝑃1𝐶 , as before.  

However, equations (12) and (13) do not hold in the 4-good case, so it is not immediately 

obvious that the quantities of 𝐶1 and 𝐻1 move in opposite directions in response to a change in 

𝑃1𝐶 , as before. 

 In the 4-good case, the assumption that the household achieves the same level of utility 

before and after the price change implies that 
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(14)    0 =
𝜕𝑈
𝜕𝐶1

𝜕𝐶1
𝜕𝑃1𝐶

+
𝜕𝑈
𝜕𝐻1

𝜕𝐻1
𝜕𝑃1𝐶

+
𝜕𝑈
𝜕𝐶2

𝜕𝐶2
𝜕𝑃1𝐶

+
𝜕𝑈
𝜕𝐻2

𝜕𝐻2
𝜕𝑃1𝐶

 

which, compared to equation (12), includes two additional unknowns, 𝜕𝐶2
𝜕𝑃1

𝐶 , and 𝜕𝐻2
𝜕𝑃1

𝐶 .  However, 

using the marginal conditions for 𝐶2 and 𝐻2 (equations (6) and (7)), we know that 𝐶2 and 𝐻2 are 

linked by: 

(15)    
𝐻2
𝐶2

= �
𝛾𝑃2𝐶

𝑃2𝐻
�

1
1−𝛼

 ≡ 𝜒 

 Equation (15), in conjunction with the fact that 𝑃2𝐶  and 𝑃2𝐻 are held constant in this 

thought experiment, implies that the ratio of  𝐻2  to  𝐶2 will remain constant when  𝑃1𝐶  varies. 

Thus equation (14) can be written as a restriction on three unknowns: 

(16)    0 =
𝜕𝑈
𝜕𝐶1

𝜕𝐶1
𝜕𝑃1𝐶

+
𝜕𝑈
𝜕𝐻1

𝜕𝐻1
𝜕𝑃1𝐶

+ �
𝜕𝑈
𝜕𝐶2

+ 𝜒
𝜕𝑈
𝜕𝐻2

�
𝜕𝐶2
𝜕𝑃1𝐶

 

 In order to determine whether the quantities of 𝐶1 and  𝐻1 move in the same direction, or 

the opposite direction, in response to a change in 𝑃1𝐶 , we need an additional (intertemporal) 

restriction that allows us to write 𝜕𝐶2
𝜕𝑃1

𝐶  in terms of  𝜕𝐶1
𝜕𝑃1

𝐶  and  𝜕𝐻1
𝜕𝑃1

𝐶 and obtain the analog of equation 

(13) for the 4-good case.  Consider the ratio of the first order conditions for 𝐻1 and  𝐻2 

(equations (6) and (8)), which implies: 

(17)     𝑃2𝐻
𝜕𝑢
𝜕𝐻1

= 𝑃1𝐻𝛽
𝜕𝑢
𝜕𝐻2

   

In equation (17), lower case “u” denotes the within-period utility function; that is,  𝑈 =

𝑢(𝐶1,𝐻1) + 𝛽𝑢(𝐶2,𝐻2). 

 Differentiating equation (17) with respect to 𝑃1𝐶  , and using equation (15) gives: 

(18)     𝑃2𝐻 �
𝜕2𝑢

𝜕𝐻1𝜕𝐶1
𝜕𝐶1
𝜕𝑃1𝐶

+
𝜕2𝑢
𝜕𝐻12

𝜕𝐻1
𝜕𝑃1𝐶

� = 𝑃1𝐻𝛽 �
𝜕2𝑢

𝜕𝐻2𝜕𝐶2
+ 𝜒

𝜕2𝑢
𝜕𝐻22

�
𝜕𝐶2
𝜕𝑃1𝐶
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Dividing equation (18) by equation (17) implies: 

(19)     �
𝜕𝑢
𝜕𝐻1

�
−1

�
𝜕2𝑢

𝜕𝐻1𝜕𝐶1
𝜕𝐶1
𝜕𝑃1𝐶

+
𝜕2𝑢
𝜕𝐻12

𝜕𝐻1
𝜕𝑃1𝐶

� = �
𝜕𝑢
𝜕𝐻2

�
−1

�
𝜕2𝑢

𝜕𝐻2𝜕𝐶2
+ 𝜒

𝜕2𝑢
𝜕𝐻22

�  
𝜕𝐶2
𝜕𝑃1𝐶

  

 Assume that at the initial vector of prices was such that 𝐶1 = 𝐶2 = 𝐶0 , and likewise,  

𝐻1 = 𝐻2 = 𝐻0.  Since all the derivatives of the utility function are evaluated at the common 

point (𝐶0,𝐻0), we have: 

(20a)        
𝜕2𝑢

𝜕𝐻1𝜕𝐶1
=

𝜕2𝑢
𝜕𝐻2𝜕𝐶2

 

(20b)        
𝜕2𝑢
𝜕𝐻12

=
𝜕2𝑢
𝜕𝐻22

       

(20c)         
𝜕𝑢
𝜕𝐻1

=
𝜕𝑢
𝜕𝐻2

 

 From equation (15), the ratio of  𝐻2 to 𝐶2 is equal to a constant denoted by  𝜒.  Thus for 

𝐶2 = 𝐶0 , 𝐻2 = 𝐻0, 

(21)    
𝐻0
𝐶0

= �
𝛾𝑃2𝐶

𝑃2𝐻
�

1
1−𝛼

≡ 𝜒 

 In addition, multiply both sides of equation (19) by  𝜕𝑢
𝜕𝐻1

𝐶0 , and solve for  𝜕𝐶2
𝜕𝑃1

𝐶 to get: 

(22)           
𝜕𝐶2
𝜕𝑃1𝐶

= �
𝜕2𝑢
𝜕𝐻𝜕𝐶 𝐶0

𝜕2𝑢
𝜕𝐻𝜕𝐶 𝐶0 + 𝜕2𝑢

𝜕𝐻2 𝐻0
�
𝜕𝐶1
𝜕𝑃1𝐶

+ �
𝜕2𝑢
𝜕𝐻2 𝐶0

𝜕2𝑢
𝜕𝐻𝜕𝐶 𝐶0 + 𝜕2𝑢

𝜕𝐻2 𝐻0
�
𝜕𝐻1
𝜕𝑃1𝐶

 

 In equation (22),  𝜕
2𝑢

𝜕𝐻𝜕𝐶
  is notation used to reflect the common value of  

𝜕2𝑢
𝜕𝐻1𝜕𝐶1

 and  𝜕2𝑢
𝜕𝐻2𝜕𝐶2

 when evaluated at 𝐶1 = 𝐶2 = 𝐶0 and 𝐻1 = 𝐻2 = 𝐻0.  Similarly,  𝜕
2𝑢

𝜕𝐻2  is 

notation used to reflect the common value of  𝜕
2𝑢

𝜕𝐻12
  and  𝜕

2𝑢
𝜕𝐻22

 .   

 Consider equation (16), which describes the joint behavior of 𝐶1, 𝐻1, and 𝐶2 on a level 
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curve of the utility function.   After substituting out the constant  𝜒, we get: 

(23)    0 =
𝜕𝑢
𝜕𝐶1

𝜕𝐶1
𝜕𝑃1𝐶

+
𝜕𝑢
𝜕𝐻1

𝜕𝐻1
𝜕𝑃1𝐶

+ 𝛽 �
𝜕𝑢
𝜕𝐶2

+
𝐻𝑜
𝐶0

𝜕𝑢
𝜕𝐻2

�
𝜕𝐶2
𝜕𝑃1𝐶

 

Using equation (22) to eliminate  𝜕𝐶2
𝜕𝑃1

𝐶, and simplifying, we finally obtain an answer to the 

question of whether the quantity  𝐻1 moves in the same direction, or in the opposite direction, as 

the quantity 𝐶1 in response to a change in the price of 𝐶1: 

(24)       
𝜕𝐻1
𝜕𝑃1𝐶

=  −�

𝜕𝑢
𝜕𝐶1
𝜕𝑢
𝜕𝐻1

�
�(1 + 𝛽) − 𝛽 �1 − 𝛼

𝜌 ��

�(1 + 𝛽) + 𝛽 �

𝜕𝑢
𝜕𝐶1
𝜕𝑢
𝜕𝐻1

𝐶0
𝐻0
� �1 − 𝛼

𝜌 ��

 
𝜕𝐶1
𝜕𝑃1𝐶

 

 By setting the discount factor,  𝛽 , to zero, equation (24) can be specialized to reflect the 

atemporal, two-good case.  With  𝛽 = 0, equation (24) coincides with equation (13) and 

indicates that a change in the price of 𝐶1 causes the quantities of 𝐻1 and 𝐶1 to move in opposite 

directions, for all allowable values of the parameters of the utility function; if the set of goods is 

limited to just two goods, the two goods must be substitutes. 

 However, in the more general, four-good case (i.e., for 0 < 𝛽 ≤ 1), equation (24) 

indicates that the quantities of 𝐻1 and 𝐶1 can either move in opposite directions or in the same 

direction, depending on the values of the parameters.  Both the ratio of marginal utilities and the 

denominator must be positive for all allowable parameter values.  Therefore, it is the sign of the 

expression in square brackets in the numerator that determines whether 𝐻1 rises, falls, or remains 

unchanged when the price of 𝐶1 rises.  The quantities demanded of the two goods will move in 

opposite directions (that is, act like substitutes) if  1+𝛽
𝛽

> 1−α
ρ

 , but move in the same direction 

(that is, act like complements) if the inequality goes the other way.  Since the permissible range 

of  𝛼  is  −∞ ≤  𝛼 ≤ 1 , this tells us that the two goods will act as substitutes when  𝛼  is in the 
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upper part of the range,  1 − �1+𝛽
𝛽
� 𝜌 < 𝛼 ≤ 1 , and like complements when  𝛼  is in the lower 

part of the range, −∞ ≤ 𝛼 < 1 − �1+𝛽
𝛽
� 𝜌  .   

 To summarize, let’s return to the two-period, two good utility function in equation (2), 

and assume that there is no uncertainty, either in terms of the budget constraint, given by W, or 

in the prices of the goods.  The price of 𝐶1 rises, while the other prices remain constant.  We 

know immediately that the quantity demanded of 𝐶1 falls, as 𝐶1 is now more expensive relative 

to the three other goods.  We also know that the ratio of 𝐶1 to 𝐻1 falls, and that the magnitude of 

the effect on the ratio is determined solely by the parameter 𝛼.  However, the magnitude of the 

fall in quantity demanded of 𝐶1, and both the direction and magnitude of the effect on the 

quantity demanded of 𝐻1 depends on the value of  𝛼  relative to the value of  𝜌 .   

 To understand the intuition behind the result, consider the schematic in Figure 1.  

 

 

                                             𝐶1                                             𝐶2 

 

 

                                            𝐻1                                              𝐻2 

 

 

 

Figure 1:  Low degree of curvature with respect to intertemporal reallocation; 
                 high degree of curvature with respect to intratemporal reallocation 
 
The horizontal arrows representing reallocation of consumption across time are drawn fairly flat 

(that is, with a low degree of curvature) to represent the assumption that the curvature of the 
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utility function with respect to the composite good (as determined by a value of  𝜌 ) is small.  In 

contrast, the “highly curved” vertical arrows represent the assumption that the curvature of the 

utility function with respect to a change in the composition of the composite good (as determined 

by the value of  𝛼) is large.   When intratemporal reallocation is difficult relative to intertemporal 

reallocation, as depicted in Figure 1, the values of  𝛼  and  𝜌  would satisfy 

 −∞ ≤ 𝛼 < 1 − �1+𝛽
𝛽
� 𝜌 . 

 As 𝑃1𝐶  rises (holding constant the prices of the other goods), the household will reduce 

consumption of  𝐶1  and increase consumption of some or all of the other goods.  Within period 

2, the ratio  𝐶2
𝐻2

 is unchanged.  Within period 1, the ratio  𝐶1
𝐻1

  falls as a result of the increase in  𝑃1
𝐶

𝑃1𝐻
 .  

However, if the curvature of the utility function with respect to the composition of the composite 

good is high, as assumed in Figure 1, the magnitude of the increase in the ratio  𝐶1
𝐻1

  is small.  In 

an intertemporal context, the household responds to the increase in  𝑃1𝐶  not only by changing the 

composition of the composite good, but also by increasing consumption of both goods in period 

2.  If, as depicted in Figure 1, the curvature of the utility function with respect to the composite 

good is low, the increase in  𝑃1𝐶  will induce a large increase in the consumption of  𝐶2 .  Since the 

second period price ratio,  𝑃2
𝐶

𝑃2𝐻
 , has not changed, the second period ratio of quantities  𝐶2

𝐻2
  is 

unchanged.  Therefore the increase in  𝑃1𝐶  induces a large increase in  𝐻2  as well as  𝐶2 . 

       When intratemporal substitution is “difficult” (shorthand for a high degree of curvature 

of the utility function with respect to the composition of the composite good), the ratio of 

quantities within period 1,  𝐶1
𝐻1

 , falls only slightly when  𝑃1𝐶  rises.  If at the same time, 

intertemporal substitution is “easy” (shorthand for a low degree of curvature of the utility 
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function with respect to the composite good), the optimal response of the household is to 

substantially increase consumption of the second period composite good (that is, both 𝐻2  and  

𝐶2) while reducing consumption of the first period composite good.  Thus while the 

intratemporal substitution effect causes the consumption of  𝐻1  to increase in response to an 

increase in 𝑃1𝐶 , the intertemporal substitution effect works in the opposite direction, inducing a 

reduction in  𝐻1 (and  𝐶1 ) as consumption of 𝐻2  and  𝐶2 increase.  When intratemporal 

substitution is “difficult” and intertemporal substitution is “easy”, intertemporal effect 

dominates; both  𝐶1  and  𝐻1 will decrease in response to an increase in  𝑃1𝐶 .   

 The diagram in Figure 2 depicts a different configuration of parameters;  intertemporal 

reallocation is “difficult”,  while intratemporal reallocation is “easy”. 

 

 

 

 

                                             𝐶1                                             𝐶2 

 

 

                                            𝐻1                                              𝐻2 

 

 

 

 

Figure 2:  High degree of curvature with respect to intertemporal reallocation; 
                 low degree of curvature with respect to intratemporal reallocation 
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As before, the ratio  𝐶1
𝐻1

  falls as a result of the increase in  𝑃1
𝐶

𝑃1𝐻
 .  However, because the curvature 

of the utility function with respect to the composition of the composite good is low 

(intratemporal substitution is “easy”, the magnitude of the decrease in the ratio  𝐶1
𝐻1

  is large.  At 

the same time, the magnitude of the intertemporal reallocation from 𝐻1 and  𝐶1  to   𝐶2  and  𝐻2 

is sharply limited by the “difficulty” in intertemporal substitution.  As before, the intratemporal 

substitution effect and the intertemporal substitution effect have opposing effects on the 

consumption of  𝐻1 .  For a configuration of parameters as depicted in Figure 2 (“easy” 

intratemporal substitution and “difficult” intertemporal substitution), however, the intratemporal 

effect dominates and an increase in  𝑃1𝐶  will cause the consumption of  𝐻1 to increase. 

 Intuitively, one could think of two goods as complements if, in response to an increase in 

the price of one good, the quantity demanded of both goods declines (that is, the consumption of 

both goods moves in the same direction).  According to this approach, two goods would be 

substitutes is an increase in the price of one good causes the quantity demanded of the other good 

to increase (that is, the consumption of the two goods moves in opposite directions).  In an 

atemporal, or one-period, setting with two goods (utility function (2) with  𝛽 = 0 ), the two 

goods must be substitutes with the magnitude of the increase in 𝐻1 in response to an increase in 

𝑃1𝐶  determined solely by  𝛼 .  In an intertemporal setting, in contrast, whether two goods in a 

given period behave as complements, with the quantities of both goods moving in the same 

direction in response to an increase in  𝑃1𝐶 , or as substitutes, with the quantities of the two goods 

moving in opposite directions, does not depend on the value of   𝛼  alone, but instead depends on 

the value of  𝛼  relative to the value of  𝜌.   
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Section 3:  Dynamics of nondurable consumption 

 Assuming that nondurable consumption is costlessly adjustable, an optimizing household 

will continuously equate the marginal utility of nondurable consumption to the marginal utility 

of wealth.    In a completely specified model, the marginal utility of wealth is, of course, 

determined endogenously as a result of the household’s optimization decisions in response to 

exogenous driving variables such as asset returns, wage rates, and labor market shocks.  In this 

section, I simply assume a stochastic process for the marginal utility of wealth, and calculate the 

optimal level of nondurable consumption required to continuously equate the marginal utility of 

nondurable consumption with the marginal utility of wealth.  While this approach obviously does 

not provide a complete solution to the household’s problem, it provides a useful characterization 

of the influence of intratemporal substitutability on consumption dynamics.   

 Using  𝜇  to denote the marginal utility of nondurable consumption, a first order Taylor 

series approximation can be used to relate marginal utility in  t+1  to marginal utility in t: 

(25)         𝜇𝑡+1 = 𝜇𝑡 +
𝜕2𝑢
𝜕𝐶𝑡2

∆𝐶𝑡+1 +
𝜕2𝑢

𝜕𝐶𝑡𝜕𝐻𝑡
∆𝐻𝑡+1 

where  u  is the notation for the one-period utility function, as before.  For any time period         

(t, t+1)  during which the level of housing consumption does not change, the last term is equal to 

zero, and we can solve for the change in nondurable consumption as a function of the change in 

the marginal utility: 

(26)         ∆𝐶𝑡+1 = �
𝜕2𝑢
𝜕𝐶𝑡2

�
−1

∆𝜇𝑡+1 

Dividing both sides by  𝐶𝑡  gives 
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(27)         
∆𝐶𝑡+1
𝐶𝑡

=

⎣
⎢
⎢
⎡𝜕

2𝑢
𝜕𝐶𝑡2

 𝐶𝑡

𝜕𝑢
𝜕𝐶𝑡 ⎦

⎥
⎥
⎤
−1

∆𝜇𝑡+1
𝜇𝑡

 

or 

(28)         ∆ ln𝐶𝑡+1 =

⎣
⎢
⎢
⎡𝜕

2𝑢
𝜕𝐶𝑡2

 𝐶𝑡

𝜕𝑢
𝜕𝐶𝑡 ⎦

⎥
⎥
⎤
−1

∆ ln𝜇𝑡+1 

 As in the standard model, the growth rate of consumption is related to the growth rate of 

marginal utility by the inverse of the curvature of the utility function.   That is, if we abstract 

from housing for a moment, and think of utility as depending on just nondurable consumption, 

for example, 

(29)         𝑢� =
𝐶𝑡
1−𝜌

1 − 𝜌
 

equation (26) becomes the familiar 

(30)         ∆ ln𝐶𝑡+1 =
−1
 𝜌

 ∆ ln𝜇𝑡+1 

since the curvature of the power utility function in equation (29) is  𝜌 .  The greater the curvature 

of the utility function with respect to consumption, the smaller is the growth rate of consumption 

for a given percentage change in the marginal utility of wealth. 

 When adding housing as an argument of the utility function, the natural generalization of 

the standard one-good power utility function is: 

(31)         𝑢(𝐶𝑡,𝐻𝑡) =
(𝐶𝑡𝛼 + 𝛾𝐻𝑡𝛼)

1−𝜌
𝛼

1 − 𝜌
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For the utility function in equation (31), the curvature of the utility function with respect to the 

composite good is still given by the parameter  𝜌 , while the aggregation of the two physical 

goods into the composite good is controlled by the parameter  𝛼 . 

 Suppose that both goods are frictionlessly adjustable, and, further, that the relative price 

of housing in terms of numeraire (nondurable consumption) is constant and denoted by  P.   

Using the intratemporal first order condition, the utility maximizing quantity of housing will be 

proportion to the quantity of nondurable consumption: 

(32)         𝐻𝑡 = �
𝑃
𝛾
�

1
𝛼−1

𝐶𝑡 

which allows us to substitute out housing and write utility in terms of nondurable consumption 

and the relative price: 

(33)         𝑢(𝐶𝑡,𝐻𝑡) =
��1 + 𝛾 �𝑃𝛾�

𝛼
𝛼−1

� 𝐶𝑡𝛼�

1−𝜌
𝛼

1 − 𝜌
= �1 + 𝛾 �

𝑃
𝛾
�

𝛼
𝛼−1

�

1−𝜌
𝛼 𝐶𝑡

1−𝜌

1 − 𝜌
 

From equation (33), note that if both goods are frictionlessly adjustable with a constant relative 

price, the curvature of the utility function with respect to nondurable consumption is equal to 𝜌 , 

the curvature of the utility function with respect to the composite good.  Thus equation (30) 

describes the growth rate of nondurable consumption in both the standard one-good case (that is, 

with utility given by equation (29) and in the two good case (utility given by equation (31) when 

both goods are frictionlessly adjustable.  Further, the dynamics of nondurable consumption 

depend only on the parameter governing the curvature of the utility function with respect to the 

composite good, and does not depend on  𝛼, the parameter that determines the aggregation of the 

two goods into the composite good. 
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 However, if we assume that housing is subject to a nonconvex adjustment cost (while 

nondurable consumption remains costlessly adjustable), the solution to the household’s lifetime 

utility maximization problem will result in infrequent, large adjustments in the quantity of 

housing, and continuous, small changes in nondurable consumption.  The intratemporal marginal 

condition relating the marginal utilities of the two goods to the relative price will no longer hold.  

As long as nondurable consumption is costlessly adjustable, however, the optimizing household 

will continue to equate the marginal utility of nondurable consumption to the marginal utility of 

wealth.  Thus equation (28) provides a valid characterization of the dynamics of nondurable 

consumption.  However, for any interval within which the quantity of housing remains constant 

(due to the adjustment cost), the curvature of the utility function with respect to nondurable 

consumption is calculating by taking partial derivatives, holding H constant. 

 For the two-good utility function in equation (31), calculating the inverse of the curvature 

of the utility function with respect to nondurable consumption, and simplifying, yields 

(34)         ∆ ln𝐶𝑡+1 =
−1

(1 − 𝜅𝑡)(1 − 𝛼) + 𝜅𝑡𝜌
 ∆ ln 𝜇𝑡+1     for      𝜅𝑡 =

𝐶𝑡𝛼

𝐶𝑡𝛼 + 𝛾𝐻𝑡𝛼
 

Note that if we eliminate housing (by setting 𝛾 = 0), then 𝜅𝑡 = 1 and equation (34) coincides 

with equation (30).  In the general case, though, 𝜅𝑡 obeys the restriction  0 ≤ 𝜅𝑡 ≤ 1 .   

 Using equation (34), we can now illustrate the dynamics of nondurable consumption 

under the plausible assumption that housing is subject to a nonconvex adjustment cost.  The 

stochastic process for the log of the marginal utility of wealth is assumed to be 

(35)        ∆ ln 𝜇𝑡+1 = −𝛿 + 𝜎𝜖𝜖𝑡 
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where  𝜖𝑡  is independently and identically distributed standard normal.  The drift in the marginal 

utility of wealth is assumed to be negative (reflecting a positive drift in wealth itself; 𝜎𝜖 is a scale 

parameter). 

 In the figures that follow, housing is assumed constant at the level H=5 for the first 20 

periods.  In period 21, the level of housing changes to H=8 and remains constant at that level for 

the next 20 periods.  Nondurable consumption is assumed to be equal to 5 units in period 1.  

Interpreting the time periods as quarters, the value of the drift parameter, 𝛿, is set to .005; the 

scale parameter is set at 𝜎𝜖 = .02 .  A sample path for the marginal utility of wealth is generated 

by using 40 draws from the standard normal distribution as inputs in equation (35).  Given the 

assumed path of housing, the initial value of nondurable consumption in period 1, and the sample 

path for the marginal utility of wealth, equation (34) is then used to generate the path of 

nondurable consumption over the 40 periods.  In this “comparative dynamics” exercise, the value 

of  𝜌  is held constant in order to isolate the effect of the parameter  𝛼 on the stochastic behavior 

of nondurable consumption.  In particular, 𝜌 is held constant at the moderate value of  2.   

 Having fixed the value of  𝜌  at  𝜌 = 2, it seems natural to start with the assumption that 

𝛼 = −1, as the utility function is separable in this case.  That is, when  𝛼 = 1 − 𝜌, the utility 

function becomes 

(36)          𝑢(𝐶𝑡,𝐻𝑡) =
𝐶𝑡
1−𝜌 + 𝛾𝐻𝑡

1−𝜌

1 − 𝜌
 

and the marginal utility of nondurable consumption no longer depends on the level of housing 

consumption.  Given the separability of the utility function when 𝛼 =  −1, the path of 

nondurable consumption coincides with the path predicted by the standard, one-good model. 
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 For simplicity, assume that the units of measurement of the two goods are such that the 

relative price of housing is unity.  In this case, we can consider total consumption by simply 

adding the quantities of the two goods.  While total consumption is not plotted in Figure 3, it is 

clear that the discontinuity in housing consumption would be translated directly into total 

consumption. 

Next, consider the utility function when 𝛼 = 1.  In this case the utility function is simply 

(34)         𝑢(𝐶𝑡,𝐻𝑡) =
�𝐶𝑡 + 𝛾𝐻𝑡 �

1−𝜌

1 − 𝜌
 

and utility depends solely on the weighted sum of the two goods.  While the path of nondurable 

consumption prior to, and after, the discrete change in H at period 21 is qualitatively similar to 

the path in the separable case, note that it is twice as volatile.  When the two goods are perfect 

substitutes, the standard deviation of the growth rate of total (weighted) consumption will be 

equal to the standard deviation of the growth rate of total consumption when both goods are 

frictionless adjustable.  However, since the quantity of housing is constant over the first 20 

periods due to the adjustment cost, the volatility of the growth rate of nondurable consumption 
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Figure 3:     Dynamics of nondurable consumption, 
                              separable case: α = 1 - ρ = -1 
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must be larger since all of the variation in total consumption comes from nondurable 

consumption alone.

 More dramatic is the discontinuity in the path of nondurable consumption that arises 

when the two goods are perfect substitutes.  When 𝛼 = 1, for as long as the level of housing 

consumption is constant at the original level, the household responds to the stochastic process on 

the marginal utility of wealth by varying nondurable consumption, but when the level of housing 

consumption jumps, nondurable consumption exhibits a jump equal in magnitude but in the 

opposite direction.  Thus when the two goods are perfect substitutes, total consumption (C+H) 

follows the path implied by the standard frictionless model, even though neither the path of 

nondurable consumption nor that of housing consumption is consistent with the standard 

frictionless model.  
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C and H are perfect substitutes: 
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 Next, consider a value of 𝛼 = .5 .  While the two goods are not perfect substitutes, for 

this value of  𝛼  the curvature of the utility function with respect to changes in the composition of 

the composite good is small.  Compared to the previous case (of perfect substitutes), the 

volatility of nondurable consumption is slightly smaller within the intervals during which the 

quantity of housing is fixed.  During the first 20 periods, nondurable consumption varies in order 

to keep the marginal utility of nondurable consumption equal to the marginal utility of wealth.  

However, in contrast to the case in which the two goods are perfect substitutes, marginal utility 

declines as nondurable consumption becomes a larger fraction of total consumption, and this 

response of the marginal utility of consumption to the composition of the composite good 

implies that nondurable consumption varies less, over the first 20 periods, than in the previous 

case of perfect substitutability.

 

 When the quantity of housing moves discontinuously in period 21, note that while 

nondurable consumption moves in the opposite direction, as in the previous case, the magnitude 
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of the discontinuity (or “jump”) in nondurable consumption is now smaller than the 

contemporaneous jump in the quantity of housing.  Since the jump in housing consumption is 

only partially offset by an opposite direction jump in nondurable consumption, the discontinuity 

appears in total consumption as well. 

 In Figure 4 (for 𝛼 = 1) and Figure 5 (for 𝛼 = .5), intratemporal substitution is “easy” 

relative to intertemporal substitution in the sense that, given the assumed value of  𝜌 = 2, the two 

parameters satisfy the inequality:  𝛼 > 1 −  𝜌 .  When intratemporal substitution is “easy” 

relative to intertemporal substitution, the discontinuous jump in nondurable consumption is in 

the opposite direction of the jump in housing consumption.  In Figures 6 and 7, intratemporal 

substitution is “difficult” relative to intertemporal substitution in the sense that  𝛼  and   𝜌  are 

now related by  𝛼 < 1 −  𝜌 .  Note that the consequence of intratemporal substitution being 

difficult relative to intertemporal substitution is that the jump in nondurable consumption is now 

in the same direction as the jump in housing consumption.  While the figures themselves are 

simply illustrative, it is easy to show analytically that the sign of the covariance of the jumps in 

the two goods depends on the value of  𝛼  relative to 𝜌  by considering equation (25).  

Rearranging slightly, equation (25) implies:    

(35)           𝐶𝑡+1 =  

−𝜕2𝑢
𝜕𝐶𝑡𝜕𝐻𝑡
𝜕2𝑢
𝜕𝑐2

∆𝐻𝑡+1 + 
1
𝜕2𝑢
𝜕𝑐2

∆𝜇𝑡+1 

For the assumed utility function, the coefficient on  ∆𝐻𝑡+1 is: 

 (36)     

−𝜕2𝑢
𝜕𝐶𝑡𝜕𝐻𝑡
𝜕2𝑢
𝜕𝑐2

=  �
1 − 𝜌 − 𝛼

𝜌
𝛾 �

𝐶
𝐻�

𝛼
+ (1 − 𝛼)

�
𝐶
𝐻

 



27 
 

 

      For all allowable values of the parameters, the coefficient of ∆𝐻𝑡+1 is: zero if  𝛼 = 1 −  𝜌,      

negative if  𝛼 > 1 −  𝜌, and positive if  𝛼 < 1 −  𝜌 . 

 

 For  𝛼 = -2, the nondurable consumption exhibits a small jump in the same direction as 

the discontinuity in housing consumption in period 21.  In this case intratemporal substitution is 

“difficult” relative to intertemporal substitutution, in the sense that  -2 = 𝛼 < 1 −  𝜌 <  -1 ,but 

because it is only slightly more difficult, the behavior of nondurable consumption in Figure 6 

differs only slightly from the path of nondurable consumption in Figure 3, which illustrates the 

separable case.    

 Figure 7 illusrates the case in which  𝛼 = -6;  intratemporal substitution is “very difficult” 

relative to intertemporal substitution in the sense that  𝛼  is substantially smaller than  1 −  𝜌 .  

Note that the magnitude of the jump in nondurable consumption between periods 20 and 21 is 

large, and the response of nondurable consumption to variation in the marginal utility of wealth 
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Figure 6:  Dynamics of nondurable consumption, 
α = -2 < 1 - ρ = -1 
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within periods 1 to 20 and 21 to 40 is correspondingly small.  While housing is assumed to be 

held constant at H = 5 units for the first 20 periods, the household’s optimal choice of nondurable 

consumption varies only slightly within the first 20 periods because the vale of  𝛼 of  -6 imples 

that the marginal utility of the composite good falls off very dramatically as the composition of 

the composite good changes.  As wealth drifts upward within the first 20 periods, even though 

the household is free to expand total consumption by altering its consumption of nondurables, 

the optimal decision is to increase consumption of nondurables only very slightly.  That is, 

within the first 20 periods, almost all of the stochastic increments to wealth are saved.  When the 

jump in housing consumption occurs between period 20 and 21, nondurable consumption 

follows with a jump of the same direction and similar magnitude.  In effect, the household is 
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α = -6 < 1 - ρ = -1 
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intertemporally reallocating nonduruable consumption from the first 20 periods to the second 20 

periods, compared to the allocations that result when the utility function is separable (𝛼 = 1 −  𝜌 

as in Figure 3) or, more dramatically, when the two goods are perfect substitutes (𝛼 = 1 as in 

Figure 4).  

Section 4:  Conclusions  

 In the simplest intertemporal setting  -- that is, when utility depends on a single, 

frictionlessly adjustable consumption good  -- the household’s willingness to substitute 

consumption intertemporally is solely determined by the parameter governing the curvature of 

the utility function.  When the basic utility specification is then generalized from one good to 

two, as in the common utility function given by equation (1), however, the curvature parameter, 

𝜌 , now specifies the curvature of the utility function with respect to a composite good.  If we 

assume that both goods are frictionlessly adjustable, then the composite good and each of the 

individual goods will all have the same dynamics, and the intuition developed from the one-good 

case  -- that the household’s willingness to substitute intertemporally is solely determined by the 

curvature parameter, 𝜌 , remains valid.  In this paper, however, the two goods are interpreted as 

housing services, H, and non-housing goods (or nondurable goods), C.  Any frictions or costs 

involved in changing the level of nondurable consumption may be sufficiently small that 

abstracting from these frictions is a valid modeling choice.  While retaining the conventional 

assumption of frictionless adjustment of nondurable consumption, a basic premise of the paper is 

that a substantial adjustment cost – in particular a nonconvex, or lumpy, adjustment cost – is an 

essential feature of housing services.  In a fully specified model of the lifetime optimization 

problem, the household will endogenously choose 1) the timing of the infrequent changes in the 

quantity of housing services consumed, 2) the level of housing services consumed, and 3) the 
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level of nondurable consumption.  During an interval within which the household chooses to 

leave the level of housing services unchanged, the level of nondurable consumption will be 

determined by the (optimally) predetermined level of housing consumption and the marginal 

utility of wealth.  In this paper, I numerically solve the second part of the problem – finding the 

optimal level of nondurable consumption, conditional on an assumed exogenous path for housing 

consumption and for the marginal utility of wealth.  While the assumed path of housing is not 

generated endogenously from a complete specification of the household’s lifetime optimization 

problem, it captures the essential feature that emerges from a complete specification of the 

problem:  long periods of during which housing consumption is constant, and large, infrequent 

changes in the level of housing services.  

 The presence of a nonconvex adjustment cost on housing has a dramatic effect on the 

dynamics of nondurable consumption.  Further, the numerical results indicate that dynamic, or 

intertemporal behavior of nondurable consumption depends crucially on the parameter governing 

the intratemporal substitutability of the two goods (𝛼 in my parameterization) as well as the 

parameter governing the curvature of the utility function with respect to the composite good (𝜌).  

Holding constant the variance of the growth rate of the marginal utility of wealth, the paper 

demonstrates that the variance of the growth rate of nondurable consumption depends on not 

only the curvature parameter, 𝜌 , but also on the parameter governing intratemporal 

substitutability.  Further, the influence of the relative ease of intratemporal substitution on the 

dynamic, or intertemporal behavior of nondurable consumption is not a one way street.  The 

paper also argues that the intratemporal behavior of the two goods is determined by the ease of 

intratemporal substitution relative to the ease of intertemporal substitution, rather than on the 

intratemporal substitution parameter alone.   



31 
 

 

References 

Flavin, Marjorie, and Shinobu Nakagawa, 2008, “A Model of Housing in the Presence of 
Adjustment Costs:  A Structural Interpretation of Habit Persistence”, American Economic 
Review, 98(1): 474-495. 

 
Flavin, Marjorie, and Takashi Yamashita, 2010, “Owner-Occupied Housing:  Life-Cycle 

Implications of the Household Portfolio”, working paper, UCSD. 
 
Grossman, Sanford, and Guy Laroque, 1990, “Asset Pricing and Optimal Portfolio Choice in the 

Presence of Illiquid Durable Consumption Goods”, Econometrica, 58(1): 25-51. 
 
Hall, Robert E., 1988, “Intertemporal Substitution in Consumption”, Journal of Political 

Economy, 96(2): 339-57. 
 
Piazzesi, Monika, Martin Schneider, and Selale Tuzel, 2007, “Housing, Consumption, and Asset 

Pricing”, Journal of Financial Economics, 83(3): 531-69. 
 
 

 

 

 


