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Nash originated general non-cooperative game theory in seminal articles in
the early 1950s by formally distinguishing between non-cooperative and co-
operative models and by developing the concept of equilibrium for non-
cooperative games. Nash developed the first bargaining solution character-
ized by axioms, pioneered methods and criteria for relating cooperative-
theory solution concepts and non-cooperative games, and also made fun-
damental contributions in mathematics. Nash was the 1994 recipient of the
Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel,
jointly with John C. Harsanyi and Reinhard Selten.

The context of for Nash’s work: von Neumann and Morgenstern

Nash’s contributions to the theory of games were fundamental to the de-
velopment of the discipline and its interface with applied fields of study. This
section provides is a short account of the state of affairs before Nash’s work.
For a more detailed account, see the suggestions for further reading at the
end of this article.

The first significant step in mathematical modelling of strategic situations
was Augustin Cournot’s (1838) book on oligopoly, where Cournot presented
models of firm interaction that were analysed using what we now call Nash
equilibrium. But Cournot did not attempt, or perhaps even recognize, how
the analysis might generalize. Further, in the ensuing years confusion per-
sisted regarding whether it would be appropriate for a firm to incorporate a
response by its rivals when considering whether to change its own action.
The concept of strategic independence – that the players’ strategies can be
considered to be chosen simultaneously and independently – began to be
clarified by Emile Borel’s (1921) description of a method of play.

Game theory became a discipline with the work of John von Neumann
(1928), which was incorporated into the path-breaking book by von Neu-
mann and Oscar Morgenstern (1944; 1947). In the book, von Neumann and
Morgenstern formally defined both the extensive form (tree-based) and nor-
mal form (strategy-based) representations of games, related by the notion of
a strategy; they studied for the first time a general class of games, defining
solutions and proving existence using fixed-point methods; they introduced
the idea of analysing how coalitions of players can take advantage of binding
agreements; and they provided a theory of utility and decision-making under
risk (the expected utility criterion). With one book, game theory was created
and put on solid footing.

Von Neumann and Morgenstern were interested in developing a positive
theory of behaviour in games – for any given game, a ‘solution’. In a nutshell,
their analysis progresses as follows:

1. Formulate a solution concept for two-player zero– sum games, which have
the defining property that, for each strategy profile (one strategy for each
player), the players’ payoffs sum to zero. Such a game is special because
the only economic concern is distributional; in other words, the game
models a situation of pure conflict between the players, where one player’s
winnings come at the other’s expense.

2. Analyse n-player zero–sum games by assuming that coalitions of players
could bind together and play as a team against the other players. This
requires assuming that coalitions can communicate before the game and
make binding agreements on how to play. The value of forming a co-



alition is calculated in reference to the implied zero–sum game that the
coalitions play against one another, which ultimately is a two-player game
to which the solution from Part 1 above is applied.

3. To evaluate a non-zero–sum, n-player game, imagine the existence of a
fictitious player n+1 whose payoff is defined as negative of the sum of the
other players’ payoffs. This creates a zero–sum game to which the pre-
ceding applies.

For an illustration of von Neumann and Morgenstern’s analysis of two-
player zero–sum games (Part 1 above), consider a simple example. Suppose
that players 1 and 2 interact in the normal form game depicted in the fol-
lowing table.

 1\2   X    Y   Z 

A

B

C

  4, – 4  0, 0  – 2, 2 

  3, – 3 1, – 1  1, – 1 

  2, – 2 1, – 1  1, – 1 

Player 1 selects between strategies A, B, and C. Simultaneously, player 2
chooses between X, Y, and Z. The players’ payoffs, which might as well be in
monetary terms, are shown in the cells of the table, with player 1’s payoff
written first. Note that this is a zero–sum game in that, in each cell of the
table, the players’ payoffs sum to zero.

Von Neumann and Morgenstern motivated their solution concept by
considering sequential variations of games in which one player would move
first and then the other player, having seen what the first selected, would
respond. Their key concept is what is generally known as a ‘maximin strat-
egy’, also called a ‘security strategy’. A security strategy for a given player is
a strategy that gives the highest guaranteed payoff level; that is, it maximizes
the minimum that the player could get, where the minimum is calculated over
all of the strategies of the other player.

In the example, B and C are both security strategies for player 1 because,
regardless of what player 2 does, player 1 gets a payoff of at least 1 when
using either of these strategies, whereas it is feasible for player 1 to obtain a
lower payoff (0 or – 2, in particular) by selecting strategy A. For player 2, Y
and Z are security strategies and they guarantee a payoff of at least – 1.

Von Neumann and Morgenstern’s general analysis focuses on mixed
strategies (probability distributions over pure strategies) in finite two-player
games, to which the maximin definition extends. They prove that the players’
security levels (the amounts that the security strategies guarantee) sum to
zero. Thus, when each player selects his security strategy, each player obtains
exactly his security level payoff. Further, when one player selects his security
strategy, the other player can do no better than select her own security
strategy; that is, the two players’ security strategies are optimal responses to
each other. Security strategies also describe optimal play in zero–sum games
that are played sequentially. For example, if player 1 had the privilege of
selecting among A, B, and C after observing player 2’s choice, both players
would still select security strategies. Finally, security strategies are inter-
changeable in that the preceding conclusions hold equally well for any com-
bination of security strategies, for instance (B, Y) as well as (B, Z).

Although von Neumann and Morgenstern had developed a theory that
applied to all finite games, their theory is essentially empty for non-zero–sum
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games. For example, in converting a two-player game into a three-player
game by adding the fictitious player 3, von Neumann and Morgenstern ba-
sically change the rules of the game for the original two players, who now can
make binding agreements. The resulting prediction is that the two players
will bind themselves to a strategy profile that maximizes the sum of their
payoffs, with each player getting at least his security level. Von Neumann
and Morgenstern’s theory is therefore incomplete and unsatisfying on two
fronts. First, for non-zero–sum games, it offers no treatment of rationality in
the absence of binding commitments. Second, it offers no way of predicting
the outcome of a two-player bargaining problem beyond Francis Ysidro
Edgeworth’s (1881) contract curve and it relies on transferable utility. Nearly
all interesting economic examples involve efficiency concerns and hence are
not zero–sum in nature, so economics had little to benefit from game theory
until another significant step could be made in the modelling of rational
behaviour.

Nash’s contributions

Nash’s contributions to the emerging discipline of game theory were equally
as bold as were von Neumann and Morgenstern’s and, in terms of appli-
cability, even more significant. Nash’s main contributions were made in a
series of four papers published between 1950 and 1953 and summarized in
this section.

In his articles in the Proceedings of the National Academy of Sciences in
1950 and the Annals of Mathematics in 1951, which reported his dissertation
research, Nash (a) introduced and made clear the distinction between co-
operative and non-cooperative games – the latter being games in which
players act independently (that is, without the assumption about coalitions
that von Neumann and Morgenstern adopted) – and (b) defined a solution
concept for non-cooperative games. The first four paragraphs from Nash’s
Annals of Mathematics article describe the context and the contribution suc-
cinctly:

Von Neumann and Morgenstern have developed a very fruitful theory
of two-person zero-sum games in their book Theory of Games and
Economic Behavior. This book also contains a theory of n-person games
of a type which we would call cooperative. This theory is based on an
analysis of the interrelationships of the various coalitions which can be
formed by the players of the game.
Our Theory, in contradistinction, is based on the absence of coalitions
in that it is assumed that each participant acts independently, without
collaboration or communication with any of the others.
The notion of an equilibrium point is the basic ingredient in our theory.
This notion yields a generalization of the concept of the solution of a
two-person zero-sum game. It turns out that the set of equilibrium
points of a two-person zero-sum game is the set of all pairs of opposing
‘good strategies.’
In the immediately following sections we shall define equilibrium points
and prove that a finite non-cooperative game always has at least one
equilibrium point. We shall also introduce the notions of solvability
and strong solvability of a non-cooperative game and prove a theorem
on the geometrical structure of the set of equilibrium points of a solv-
able game. (1951, p. 286)
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Nash’s equilibrium concept became known as ‘Nash equilibrium’. It and the
cooperative/non-cooperative distinction were cited by the Royal Swedish
Academy of Sciences in awarding Nash the Nobel Prize.

In more mathematical and modern language, here are the definitions of
best response (in Nash’s words, a ‘good strategy’) and Nash equilibrium.
Consider any game defined by a number n of players; a strategy set Si for
each player i ¼ 1; 2; . . . ; n; and, for each player i, a payoff function
ui : S ! R, where S is the set of strategy profiles. The strategy sets may be
defined as mixed strategies for some underlying set of pure strategies, in
which case the payoff functions, as expectations, are linear in the mixed
strategies. For a player i, we write ‘�i’ to refer to the other players. Given a
strategy vector s�i for the other players, player i’s strategy si is called a best
response if player i can do no better than to select si; that is, we have
uiðsi; s�iÞ � uiðs

0
i; s�iÞ for every strategy s0i of player i. Then strategy profile

s� ¼ ðs�1 ; s
�
2 ; . . . ; s

�
n Þ is called a Nash equilibrium if every player is best re-

sponding to the others—that is, if for each player i, it is the case that s�i is a
best response to s��i.

For an illustration of Nash equilibrium and its relation to security strat-
egies, consider the game depicted in the following table.

 1\2 X    Y  Z 

A

B 

 C 

2,3 1,2 6,5

1,0 0,2 4,0

3,4 2,2 2,0

Observe that, in this game, C and Y are the players’ security strategies, so a
naive application of von Neumann and Morgenstern’s maximin theory (ab-
sent binding agreements) would predict that strategy profile (C, Y) be played.
However, this strategy profile is plainly inconsistent with the idea that play-
ers are rational in responding to each other. In particular, if player 1 is
expected to select C then player 2 behaves quite irrationally by choosing Y.
In fact, strategy Y is not even rationalizable for player 2; it does not survive
iterated removal of dominated strategies (see below). Thus, the notion of a
security strategy is not a good theory of behaviour for non-zero–sum games,
demonstrating the limits of von Neumann and Morgenstern’s analysis.

Next, observe that the game has two Nash equilibria in pure strategies, (C,
X) and (A, Z). Both of these are reasonable predictions in the sense that, in
both cases, the players are best responding to one another. For example, if
player 1 is sure that player 2 will select X, then it is best for player 1 to select
C; likewise, if player 2 is convinced that player 1 will select C, then it is
optimal for player 2 to choose X. There is also a mixed-strategy Nash equi-
librium in which player 1 randomizes between A and C, and player 2 ran-
domizes between X and Z. That the game has multiple Nash equilibria
demonstrates the general economic problem of coordination, in particular
the possibility that the players will coordinate on the less efficient Nash
equilibrium. Other games, such as the Prisoner’s Dilemma, have only inef-
ficient equilibria and thus reveal a fundamental tension between individual
and joint incentives.

Nash’s intuitive concept of equilibrium facilitated the analysis of all non-
cooperative games, opening the door to widespread application of game
theory. Indeed, Nash equilibrium has become the dominant solution concept
for the analysis of games. Through an ingenious fixed-point argument, Nash
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also proved the existence of an equilibrium point in every finite game. Fur-
ther, in his dissertation (1950) Nash offered two interpretations of the con-
cept, one based on rational reasoning by individual players and the other
describing stability of the distribution of strategies chosen by a population of
individuals who interact over time. The latter is a precursor to the meth-
odology of the literature on learning in games and to the modern theories of
evolutionary stability in biology (John Maynard Smith, 1984). Nash’s 1951
Annals of Mathematics article also contains a section that defines ‘dom-
inance’ (meaning one strategy yields a strictly higher payoff than another,
regardless of what the other players do) and explains how an iterated dom-
inance procedure can be used to rule out strategies that are not equilibria.
Thus, Nash also made observations that would resurface in the concept of
‘rationalizable strategic behaviour’ (B. Douglas Bernheim, 1984; David Pe-
arce, 1984), the main non-equilibrium notion of rationality. Nash even was
among the first to perform game experiments, as his co-authored article in
the volume Decision Processes (1954) attests.

In his 1950 Econometrica article, Nash tackled the two-person bargaining
problem with the objective of determining a unique solution (a precise ‘value’
that eluded von Neumann and Morgenstern) from the underlying set of
alternatives and the players’ preferences. Nash took a cooperate-theory ap-
proach by positing a system of four axioms that reasonably characterize
properties one might expect the outcome of a bargaining process to exhibit:
(a) a notion of equal bargaining power, (b) invariance to inessential utility
transformations, (c) efficiency, and (d) independence of the solution to the
removal of so-called irrelevant alternatives. Nash proved that a particular
function of parameters (which maximizes the product of surpluses) is exactly
characterized by the axioms. The analysis showed that it is possible to rea-
sonably identify a precise outcome of a bargaining problem. It also initiated
the axiomatic method for the analysis of bargaining (where theorists explore
how different axioms characterize various functional solutions), starting a
literature that thrived for several decades. The Nash bargaining solution is
still the dominant solution in applied economic models.

Nash’s second paper on bargaining (the 1953 Econometrica article) took
another major step by connecting the non-cooperative and cooperative ap-
proaches to strategic analysis. At the heart of this theoretical exercise is an
underlying non-cooperative game, which gives a set of feasible payoffs, and a
technology for the players to make binding commitments about the mixed
strategies that they will play in the underlying game. In the model, players
first simultaneously make threats, which are mixed strategies they are bound
to play if they do not reach an agreement. Then the players interact in a non-
cooperative bargaining game in which they simultaneously make payoff de-
mands – this stage is now called the ‘Nash demand game’. If their payoff
demands are feasible in the underlying game, then the players obtain their
demanded payoffs; otherwise, the players get what their threats imply.

Nash observed that the demand game has generally an infinite number of
equilibria, revealing a coordination aspect to the bargaining problem. But
Nash went further in developing a brilliant method to ‘escape from this
troublesome non-uniqueness’ by looking at the limit of ‘smooth’ approxi-
mations of the demand game. Amazingly, Nash showed that the limit is
unique and coincides with the prediction of his axiomatic model; that is, the
limit is the Nash bargaining solution. Nash’s limit argument was the fore-
runner to the enormous literature on equilibrium refinements, an area of
research that thrived decades later and was the primary subject of Nash’s
Nobel co-recipients. More significantly, Nash argued that the relation be-
tween the cooperative solution concept and the equilibrium in the non-co-
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operative model justifies wide use of the cooperative solution as a reasonable
shorthand for the actual non-cooperative setting. Nash’s argument, and fas-
cinating theoretical result, established the profession’s understanding of the
connection between cooperative and non-cooperative models and initiated
the literature on what is now called the ‘Nash program’.

After completing the work in game theory just described, Nash made
fundamental contributions in pure mathematics – contributions that, in
terms of mathematical depth and originality, were of an even higher order of
sophistication and importance. According to leading mathematician John
Milnor, Nash’s

subsequent mathematical work is far more rich and important [in this
mathematical sense]. During the following years he proved that every
smooth compact manifold can be realized as a sheet of a real algebraic
variety, proved the highly anti-intuitive C1-isometric embedding the-
orem, introduced powerful and radically new tools to prove the far
more difficult C1-isometric embedding theorem in high dimensions,
and made a strong start on fundamental existence, uniqueness, and
continuity theorems for partial differential equations. (Milnor, 1998, p.
1330)

It is not appropriate to provide here details on Nash’s pure mathematics
work (nor is it possible, due to the limitations of the author’s fields of ex-
pertise).

Nash’s personal life

Nash’s character became legendary with the publication of a biography by
Sylvia Nasar (1998) and a 2001 feature film produced by Brian Grazer and
Ron Howard. Nash’s remarkable personal journey began in Bluefield, West
Virginia, where he was born and raised. He explored mathematics and con-
ducted science experiments as a child, and attended Carnegie Institute of
Technology, where the mathematics department discovered in him a budding
genius. Nash’s ideas on bargaining that were published as ‘The Bargaining
Problem’ (1950) were developed while he was an undergraduate student at
Carnegie, during the only economics course he took, on international trade.

Nash studied mathematics in the graduate program at Princeton Univer-
sity, where, as his biography describes, he was boorish, cocky, and a re-
nowned adversary in strategic contests. At Princeton, Nash added to his
prodigious achievements, finishing his dissertation – the work on non-coop-
erative games and equilibrium that would bring him the Nobel Prize – in his
second year. (Nash also invented the board game Hex, a game independently
created by Danish mathematician Piet Hein.) Nash taught at Princeton for
one year and then took a position at Massachusetts Institute of Technology,
where he was on the faculty until 1959. There he conducted the research that
won him great acclaim in the mathematics community.

Nash’s genius in advancing game theory and mathematics was paired with
deep personal challenges. In 1959 Nash began experiencing the severe mental
disturbances of paranoid schizophrenia. He resigned from MIT and began a
phase of life marked by delusional thinking, an escape to Europe, repeated
hospitalizations, unsuccessful medical treatments, and then a long, disen-
gaged presence at Princeton. In the mid-1980s Nash miraculously began to
emerge from the delusional haze in what he describes as a gradual rejection
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of psychotic thinking on intellectual grounds (Nash, 1995). After a quarter
century of detachment, Nash’s life regained a measure of normality.

Nash’s legacy in game theory and economics

There is no simple way of quantifying the enormous reach of Nash’s ideas.
The notions of Nash equilibrium, the Nash bargaining solution, the Nash
demand game, and the Nash program have found such widespread accept-
ance and application that it has become customary, and perhaps even ap-
propriate, for researchers to forgo formally citing Nash’s articles when
utilizing these concepts. Nash ideas helped to propel game theory from a
mathematical sub-field into a full discipline, with major use and application
in not only economics, where it is the main and worthy alternative to the
competitive-market framework, but also in theoretical biology, political sci-
ence, international relations, and law.

Beyond its theoretical content, Nash’s work also made a stylistic departure
from that of von Neumann and Morgenstern, whose book methodically
records definitions, examples, and analysis for numerous special cases in the
process of developing general theory. Nash, in contrast, used the terse style
of the mathematician, presenting his ideas with minimal obscuring features.
His 1950 Proceedings of the National Academy of Sciences entry, for instance,
is generously allotted two pages and could have been typeset on one. The
benefit of focusing on the basic mathematical concepts is that it allows for a
broad range of interpretations and extensions. For example, there are several
motivations for Nash equilibrium, including as a condition for self-enforce-
ment of a contract (which is an important topic in the current literature). A
hallmark of excellent theoretical modelling is precise and straightforward
expression of assumptions and conclusions, with their relation shown in the
most simple and elegant way possible.

Mathematician Milnor, after offering the assessment of Nash’s work in
pure mathematics that is quoted above, continues with by saying: ‘However,
when mathematics is applied to other branches of human knowledge, we
must really ask a quite different question: To what extent does the new work
increase our understanding of the real world? On this basis, Nash’s thesis was
nothing short of revolutionary’ (1998, p. 1330). Two leading game theorists
of today say ‘Nash’s theory of non-cooperative games should now be rec-
ognized as one of the outstanding intellectual advances of the twentieth
century’ (Myerson, 1999, p. 1067) and ‘His work lay the foundation of non-
cooperative game theory, now the predominant mode of analysis of strategic
interactions in economics, political science, and biology’ (Crawford, 2002, p.
380).

When viewed from the perspective of five short decades, game theory has
caused a revolution in economics and other fields of study. It was with the
work of John Nash that the flame so exquisitely ignited by von Neumann
and Morgenstern became the torch that would eventually set the social sci-
ences ablaze.

Joel Watson
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