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ABSTRACT We consider a modified Prisoners’ Dilemma
game in which each agent can offer to pay the other agent to
cooperate. The subgame perfect equilibrium of this two-stage
game is Pareto efficient. We examine experimentally whether
subjects actually manage to achieve this efficient outcome. We
find an encouraging level of support for the mechanism, but
also find some evidence that subjects’ tastes for cooperation
and equity may have significant interactions with the incen-
tives provided by the mechanism.

It is easy to write down simple games that have inefficient
equilibria. The classic Prisoners’ Dilemma is perhaps the
simplest game with a dominant strategy equilibrium that is
Pareto inefficient. Literally thousands of experiments on the
Prisoners’ Dilemma have been conducted across the social
sciences. [See Rapaport and Chammah (1) and Dawes (2) for
reviews of these experiments in sociology and psychology.
Roth (3) surveys some of the studies by economists.]

Although researchers often find some fraction of coopera-
tion, the general result in these experiments is that the
incentives to defect can be very powerful. When subjects are
faced with a single shot of a Prisoners’ Dilemma they seldom
reach mutually cooperative outcomes. It is interesting to note,
however, that subjects do respond to incentives to increase
cooperation, despite the existence of a dominant strategy.
Roth and Murninghan (4), for instance, found that in a game
with an uncertain end point the subjects were more cooper-
ative the longer the anticipated horizon. Selten and Stoecker
(5) and Andreoni and Miller (6) look at finitely repeated
games and find that subjects will be more cooperative when
they can build reputations.

There is a growing number of studies that examine mech-
anisms for implementing Pareto efficient outcomes in games
with inefficient Nash equilibria. Some of the first studies were
conducted by Smith (7, 8) on the Smith auction, a mechanism
that requires unanimity to implement bids from all players.
Although the theoretical properties of this mechanism are not
well established, Smith nonetheless finds that his mechanism
generates significant amounts of cooperation. [Banks et al. (9)
generalized Smith’s mechanism and find similar results.] Other
research into more well-understood mechanisms has gener-
ated less optimism. Attiyeh et al. (10) examined the dominant
strategy Groves-Clarke mechanism and were disappointed to
find that fewer than 10% of subjects reveal preferences
truthfully. Others have considered Nash equilibrium mecha-
nisms. Bagnoli and McKee (11) examined a provision point
game in which private pledges are collected only if a threshold
of total pledges is met. They find Pareto efficient outcomes are
provided only 54% of the time. The results were even less
encouraging when Bagnoli et al. (12) turned to multiunit
provision point games. Harstad and Marrese (13, 14) examined
the Groves-Ledyard mechanism. They found the Pareto effi-
cient outcome was implemented less than 20% of the time.
Chen and Plott (15) and Chen and Tang (16) also considered
Groves-Ledyard mechanisms and found similarly disappoint-

ing results with a low punishment parameter in the mechanism.
However, when they assigned a high punishment parameter
the choices converged to the Pareto efficient equilibrium in
virtually every session. Chen and Tang (16) also consider the
Walker mechanism, again with disappointing results. Chen
(personal communication) makes the conjecture that conver-
gence under the high punishment parameter is caused by the
fact that only in this case is the mechanism supermodular.
Supermodularity provides very robust stability properties that
are consistent with learning dynamics. Cheng (18) explicitly
considers the dynamic properties of the compensation mech-
anism and finds that, with a slight modification, it, too, satisfies
supermodularity.

All of these prior experiments on mechanism design looked
at dominant strategy or Nash equilibrium mechanisms (in ref.
19 Chen provides an excellent review of this literature). In this
paper we take another approach and study a mechanism that
implements the efficient outcome in a subgame perfect Nash
equilibrium. Such subgame perfect mechanisms have gathered
interest in the theoretical literature; see Moore and Repullo
(20) for an extensive theoretical examination of implement-
ability in subgame perfect equilibria.

The game we look at is modeled after work by Varian (21)
regarding preplay contracting. More precisely, we add another
stage to the Prisoners’ Dilemma game in which the players can
make binding commitments to pay the other player some
amount if he chooses to cooperate. Of course, it has long been
known that the ability to make binding commitments elimi-
nates the dilemma in the Prisoners’ Dilemma. However, there
has been surprisingly little written about the exact form that
such binding commitments might take. A notable exception
would be experimental studies of bargaining games. In these
games subjects must agree on how to divide a fixed pie, and
failure to agree results in the loss of the pie. When subjects
alternate making binding offers, as suggested by Rubinstein
(22), the subgame perfect equilibrium involves the first player
making an offer that is (barely) acceptable to the opponent.
Hence, subgame perfection implies efficiency. As discussed by
Roth (23), however, such subgame perfect behavior seldom is
observed in these games.

In the experimental game we study here, we model the
commitment stage explicitly in a two-stage game whose sub-
game-perfect equilibria are Pareto efficient. These equilibria
imply a certain pattern of transfers between the agents that is
reminiscent of a competitive equilibrium. In particular, to
induce cooperation, each agent must be paid an amount at
least as large as the amount he would receive if he were to
defect. Roughly speaking, each agent is receiving his oppor-
tunity cost for cooperation.

We set a higher bar for ourselves by first training subjects on
a basic Prisoners’ Dilemma game, without a mechanism. This
induces the normal amount of defection and frustration among
subjects. Only then do we introduce the mechanism. We find
this mechanism to be quite successful. By the end of the
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experiment about two-thirds of all subjects chose cooperation,
which compares favorably with the experimental results for the
other efficiency-inducing mechanisms described above. We
see some systematic deviations from our predicted equilib-
rium, but this behavior is consistent with subjects having tastes
for equity similar to those observed in other experiments. We
conclude that the mechanism was successful at increasing
efficiency, and that the subjects played reasonably close to the
subgame perfect equilibrium.

Pay for Play

We begin by describing the exact form of our two-stage game,
which we call Pay for Play. Imagine a standard Prisoners’
Dilemma game with the strategy set (cooperate, defect). We
introduce a prior stage to this game where each agent can
announce a non-negative number, indicating the amount that
he will pay the other agent if he chooses the cooperate strategy
in the second stage. This announcement is binding; once the
agent offers a contract, he is obligated to carry it out.

Let us calculate the subgame perfect equilibrium of such a
game. Consider the following example of an asymmetric
Prisoners’ Dilemma:
Now we add an announcement stage to this game where each
agent simultaneously and independently announces how much

he will pay the other agent if he cooperates. Player 1 announces
a side payment of s1, and player 2 announces a side payment
of s2. Given a pair of announcements the game becomes:
If player 1 cooperates, player 2 receives 11 by defecting and 7
by cooperating. Therefore the minimal payment that would

induce him to cooperate is 4. Similarly, the minimum payment
to induce player 1 to cooperate when player 2 cooperates is 3.
If these payments are announced, that is (s1,s2) 5 (4,3), then
the second-stage game is transformed to:
Note that in this game it is a weakly dominant strategy for each
player to choose cooperate.

It can be shown (s1,s2) 5 (4,3), followed by mutual cooper-
ation, is the unique subgame perfect equilibrium when the side
payments can be any real number. See Varian (21) for a
demonstration. Note that Ziss (24) showed that mutual coop-
eration is not an equilibrium for all constellations of payoffs in
the Prisoner’s Dilemma game. For the parameters used in this
example, which are also those used in the experiment, the

Pareto efficient allocation is the unique subgame perfect
equilibrium.

In the experimental game that we consider, the side pay-
ments are restricted to be integers. This restriction adds a new
subgame perfect equilibrium to the game, namely one where
each agent pays 1 unit more than the break-even announce-
ment. In the example we are considering here we would have
s1 5 5 and s2 5 4 so the game becomes
In this game it is strictly dominant strategy to cooperate. This

equilibrium is supported by the pessimistic expectations that if
the other player is indifferent between cooperating and de-
fecting, he will choose to defect. The other equilibrium is
supported by the optimistic expectations that if the other
player is indifferent between his two strategies he will choose
to cooperate. Of course, it follows trivially that (s1,s2) 5 (4,4)
or (s1,s2) 5 (5,3), along with mutual cooperation, are also
equilibria.

The idea of adding a contracting stage to the Prisoners’
Dilemma is a variation on Varian’s (21) compensation mech-
anism. The idea is that each player offers to compensate the
other for the costs that he incurs by making the efficient choice.
Varian (21) shows that this sort of compensation mechanism
is very powerful. It can be used to internalize nearly any sort
of externality, resolve public goods problems, regulate bilateral
monopolies, etc. In addition to being robust, the mechanism
yields outcomes that are competitive equilibria, with external-
ities priced at the appropriate efficiency price.

The Experiment

Our experiment, which was run on a computer network, is
designed and presented to look like a card game. An example
of the computer screen that the subjects saw is illustrated in
Fig. 1. Instructions used in the experiment are presented in the
Appendix.

Player 2
Cooperate Defect

Player 1
Cooperate 6; 7 0; 11

Defect 9; 0 3; 4

Player 2
Cooperate Defect

Player 1
Cooperate 6 2 s1 1 s2; 7 1 s1 2 s2 0 1 s2; 11 2 s2

Defect 9 2 s1; 0 1 s1 3; 4

Player 2
Cooperate Defect

Player 1
Cooperate 5; 8 3; 8

Defect 5; 4 3; 4

Player 2
Cooperate Defect

Player 1
Cooperate 5; 8 4; 7

Defect 4; 5 3; 4

FIG. 1. Sample of the computer screen seen by subjects.
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Each game has two players with a pot of chips between them,
as shown on the screen in Fig. 1. Each chip is worth 5 cents.
Player A has two playing cards, a push card with a 6 on it, and
a pull card with a 4 on it. If player A plays his push card, then
six chips are pushed from the pot to the other player. If player
A plays his pull card, then he pulls three chips from the pot to
himself. Player B has a push card of 7 and a pull card of 3 and
has the same options. Players must move simultaneously. Note
that this game has the same payoff structure as the Prisoners’
Dilemma game illustrated above; the dominant strategy is for
each player to choose the pull card, while the Pareto efficient
strategy is for each player to choose the push card.

To give the mechanism the greatest challenge, we first ran
15 rounds of this push-pull game with each subject randomly
reassigned a different opponent each time. As is commonly
observed, the players started out cooperating but soon
switched to defecting. By the last round, most players were
playing the defect strategy of pull.

We then switched to a new game called Pay for Push. In this
game, each player independently names an amount of chips
that he will pay the other player if the other player chooses the
push card. Each player manipulates a slider on a computer
screen to indicate how many chips he would transfer to the
other player if the other player chooses to push. Once both
players had committed to their payments, the amounts were
revealed to the other player and we moved on to the push-pull
game described above. We repeated this for 25 rounds. Hence,
subjects played a total of 40 rounds, 15 of push-pull and 25 of
pay for push.

We conducted six sessions in all, with eight players per
session, using a total of 48 subjects. Subjects 1–4 played against
subjects 5–8. After each round, players 1–4 were reassigned to
a different player in the 5–8 group. Each player had cards (4
and 6 or 3 and 7) and switched cards after each play of the
game. Each session of the experiment was complete within an
hour, and the subjects earned about $9–15 in the experiment,
plus $3 for showing up. We recruited some subjects from a
subject pool that had been used in a very different bargaining
experiment several months earlier, but we do not know if any
of our subjects had participated in an experiment before. Other
subjects were recruited from economics principles courses. We
were careful to recruit subjects before any mention had been
made of Prisoners’ Dilemma in the classroom.

Results

Fig. 2 shows the fraction of subjects choosing to cooperate over
all 40 iterations of the game. Look first at rounds 1–15, which
are just the standard Prisoners’ Dilemma game. Over these
rounds, 25.8% of moves are cooperative, which declines to
22.9% over rounds 10–15. This finding is consistent with
results from other recent Prisoners’ Dilemma games. For
example, Roth and Murninghan (4) find 10.1% cooperative

moves, Cooper et al. (25) find 20%, and Andreoni and Miller
(6) find 18%. A surprising result from this part of the study,
however, is that the propensity to cooperate differs signifi-
cantly across the two types of players. Players in the role of A
cooperate 19.2% of the time, while those in the B player role
cooperate 32.5% of the time. This difference is statistically
significant (t 5 4.13). The gap remains in the final five rounds
of Prisoners’ Dilemma, with As at 16.7% and Bs at 29.2%
cooperation (t 5 2.32). What could explain this asymmetry? A
players have a push card of 6 while Bs have a push card of 7.
One possibility is that the warm glow from giving may be
higher for Bs because the gift to the other player is higher. At
the same time, As have a pull card of 4 while Bs have a pull card
of 3, so the cost of cooperating is also lower for the Bs. Hence,
if there is a independent utility from the act of cooperating, as
many have suggested, then we may expect more cooperation
from Bs.

Given this training at defecting, how do subjects respond to
the introduction of the pay-for-push mechanism? Fig. 2 shows
that the response is tentative at first, but after three rounds
there is clear movement toward more cooperation. During the
entire pay-for-push segment, 50.5% of all moves are cooper-
ative, and 54.5% are cooperative over the last five rounds of
play. Again, however, there is a significant difference between
As and Bs, with cooperation by As at 41.8% and by Bs at 59.2%
(t 5 6.09).

Clearly the mechanism is having some effect; cooperation
has doubled. But the mechanism is also far from 100%
successful. There are two reasons that this could be so. First,
subjects could be failing to make the subgame perfect side
payments in first phase of mechanism, and second, when they
receive the appropriate side payment they fail to respond
optimally. We examine both of these possibilities next.

Side Payments: Phase 1 of the Mechanism. Fig. 3 shows the
average side payment made during the experiment for both As
and Bs. The subgame perfect prediction is that player A should
be offering 3 or 4, and player B should be offering 4 or 5. We
see that actual behavior deviates some from this prediction,
especially for Bs. Over the 25 rounds, A players’ average offer
is 3.39, which rises to 3.57 for the final five rounds, which is
consistent with the prediction. For Bs, however, the overall
average side payment offered is 3.30 on average, rising to 3.52
over the last five rounds, but is well short of the predicted 4–5.

It is not obvious why side payments would differ in this way.
One possibility is that this could be another manifestation of
pure tastes for cooperation we saw in the regular Prisoners’
Dilemma game. Alternatively, some subjects could have been
using the side payments to try to even out earnings in the
mutually cooperative outcome, which could be accomplished
if player A’s side payment is one greater than player B’s. In the
subgame perfect equilibrium, however, B’s side payment is one
greater than A’s. It could be that some A players could have

FIG. 2. Cooperation by rounds. Rounds 1–15, Prisoners’ Dilemma;
rounds 16–40, with mechanism.

FIG. 3. Average side payments by round.
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tried to increase their side payment, and some Bs decrease
theirs, in the hopes that tastes for cooperation or equity would
be enough to enforce the mutually cooperative outcome,
leading to the choices observed.

Let’s examine this hypothesis by looking more carefully at
the offers made. First, ask how often an offer at or above the
equilibrium offer was made. Overall, 63.5% of all side pay-
ments were at or above the predicted amounts, rising to 84.9%
for the last five rounds. This fraction, however, is higher for the
A players than for B players: 78.7% for As and 48.3% for Bs,
which is a significant difference (t 5 8.91). Over the last five
rounds, however, the fraction is similar and the difference is
insignificant: 85.8% for As and 84.2% for Bs (t 5 0.36). How
often did a player make an offer strictly above the predicted
amount, that is, above 3 for As and above 4 for Bs? Overall this
happened 39.9% of the time, but again it is far more likely to
happen among the As. The difference is 57.5% for As and 22.3
for Bs, which is significant (t 5 13.32), and it grows to 65.8%
versus 12.5% for the last five rounds (t 5 10.10). Hence, by the
end of the experiment players in both roles are equally likely
to make an offer that should generate a cooperative reply, but
the surplus in the offer is significantly higher in offers made by
A players. This finding indeed indicates a bias in play toward
more fair allocations.

Cooperation: Phase 2 of the Mechanism. Next we ask how
subjects respond to the side payments offered in phase 1. Fig.
4 shows how often subjects cooperated when they were offered
a side payment at least as high as the subgame perfect Nash
equilibrium prediction. The average over the 25 rounds of the
mechanism is 67.9%. Hence, when it is optimal to cooperate,
two-thirds of subjects do. What about when the offer makes
cooperation a dominant strategy? Now the fraction who
cooperate when given such an offer rises to 77.4%.

Is there a difference between the A and B players in this
regard? Disaggregating this we find that As respond optimally
to good offers 63.1% of the time, while Bs do 71.0%. For offers
generating a dominant strategy, As cooperate 71.6% of the
time and Bs 79.7%. Again, there is a difference in the actions
of players in the two roles, albeit a smaller difference than in
the offers.

What about the propensity to defect when the side payments
offered are so low that defection is the best reply to either of
the other player’s choices? Given such a bad offer, 79.9% of
people will defect. Note this rate of defection is only slightly
higher than that in the ordinary Prisoners’ Dilemma game,
which as we reported earlier was 77.1%.

Again, let’s separate the behavior of the A and B players.
When As got a bad offer, that is of 3 or less, they defected
78.1% of the time. When Bs get a bad offer, that is of 2 or less,
they defected 84.4% of the time. In contrast to the earlier
results, these differences are not significant (t 5 1.59). Hence,
any significant difference between As and Bs tends to vanish
when they fail to get a good offer in the mechanism.

Summary: A Closer Look at Equity. We have seen that,
while the mechanism works reasonably well, there is significant
asymmetry between the play of As and Bs. In Prisoners’
Dilemma without the mechanism, Bs are significantly more
cooperative than As. With the mechanism, As make side
payments that have a significantly higher surplus. How do we
interpret the asymmetry?

To understand the asymmetry of behavior, we should begin
by examining the asymmetry in the payoff matrix in the
standard Prisoners’ Dilemma game. When each player is
choosing between his push card and pull card, he is weighing
whether to be nice or be selfish. A players can give 6 to the
other player at a cost of 4 to themselves. This implies a price
of cooperation of 2y3. B players face a similar decision, but
they can give 7 at a cost of 3, implying a price of 3y7. Because
3y7 , 2y3, we would predict Bs to be more cooperative, which
is what we see.

How would this effect translate to the pay-for-push game?
Implicit in the last paragraph is that individuals have a natural
desire to be nice in these situations, a hypothesis that has
received a fair degree of support in prior experiments. [See
refs. 1 and 2 in the broad social science literature. Within
economics see, for example, Palfrey and Rosenthal (26) for a
discussion of social dilemmas, Andreoni and Miller (6) on
Prisoners’ Dilemma, Andreoni (27) and Palfrey and Prisbrey
(28) on public goods, and Andreoni and Miller (29) for general
tastes for giving.]

If there is a utility component in cooperation above and
beyond the monetary gain, then it may be that one need not
pay the full opportunity cost of cooperation to elicit cooper-
ation in the mechanism. Because Bs face a lower price than As,
they already are more inclined to cooperate; hence a side
payment below the subgame perfect payments is more likely to
induce cooperation for the Bs than for the As. This means that,
relative to the subgame perfect side payment, As should get
higher payments than Bs. Unfortunately, this is exactly the
opposite of what happened.

This means that simple demands for being nice will not be
enough to explain this asymmetry. A more complete expla-
nation can be found by looking at final payoffs. If the subgame
perfect Nash equilibrium is reached, the payoffs will be fairly
unequal; As will earn 8 and Bs 5. Another finding from
experiments on games with unequal equilibrium payoffs is that
subjects tend to dislike unequal payoffs, especially when on the
losing end (see refs. 17 and 30). If subjects do indeed dislike
inequality, then this should put pressure on side payments to
equal out earnings, not simply to pay the opportunity cost of
cooperation. This in turn should suppress side payments by B
and increase side payments by A, which is exactly what was
observed in the experiment.

It is fair to conclude therefore that the kinds of taste for
equity seen in other experiments may be at work here and, as
in other settings, is interacting with the incentives of the
mechanism. The asymmetry of the payoffs seems particularly
powerful in affecting the choices of our subjects.

Conclusion

We considered a subgame perfect Nash equilibrium mecha-
nism that was applied to the Prisoners’ Dilemma. This is
perhaps the simplest form of this mechanism that could be
implemented in an experiment. We saw that overall the
mechanism was largely successful at implementing Pareto
efficient allocations. We found that players made offers of side
payments that should induce cooperation about 63.5% of the
time. When such offers were received, subjects responded with
cooperation nearly 70% of the time. Accounting for the usual
levels of noise and confusion in experiments, we find these
results encouraging for this mechanism.FIG. 4. Probability of cooperation when receiving a good offer.

10936 Economic Sciences: Andreoni and Varian Proc. Natl. Acad. Sci. USA 96 (1999)



The presence of concerns for equity also were found in our
data, and they appeared to interact with the incentives pre-
sented in the mechanism. Especially important was the appar-
ent effort of subjects to use the side payments to undo the
inequality implied by the asymmetric payoff matrix, as well as
to cover the opportunity costs of cooperation. A symmetric
game, while less revealing about the ability of subjects to learn
the mechanism, may eliminate some of the concerns with
inequality that entered our experiment. Alternatively, one
could follow the experiences of Chen and Plott (15) and use a
steeper payoff space with a greater gain from cooperation in
hopes that this could swamp the concerns for equity and get an
even stronger result for the mechanism. These could be
interesting topics for future research.

Appendix: Subjects’ Instructions

Instructions for Zenda. Zenda is a simple card game that
you play with one other person. Each game of Zenda will
consist of 15–25 rounds of play. Players are matched up
randomly each round, so that you will play a different person
each round. All of your choices and earnings in the experiment
will be confidential.

In Zenda, you will be playing for chips. The value of the chips
corresponds to cash earnings for you. In particular, each chip
you earn is worth 5 cents. So if you earn five chips in a round,
you earn 25 cents in the round. If you earn 10 chips, you earn
50 cents in that round. The earnings that you make each round
will be totaled by the experimenter and paid to you privately
and in cash at the end of the experiment. No other subject will
know your earnings.

After each round is finished, a dialog box will be displayed
informing you of this fact and asking you to wait until the other
players are finished. Please click on the OK button as soon as
you have read and understood the material because the system
will wait until everyone has clicked OK before it proceeds.
Dialog boxes will be displayed at other times during the game;
after you have read and understood a dialog box, click OK.

Please do not talk to any other player or look at any other
player’s screen. If you have a problem, please raise your hand
and someone will come to help you. We expect the experiment
to last about 50 min.

Information About You. The first thing that you see will be
a panel that asks for information about you. The university
requires that we collect this information because we are going
to give you money. This information is not recorded as part of
the experimental data; it is only there to satisfy university rules
about dispersing money. In the experiment you are identified
only by a player number, and we maintain strict anonymity. No
one in the experiment will ever know your name, your choices,
or your earnings.

Phase 1 of Zenda. There are two phases to Zenda. Phase 1
is called push-pull. When you play push-pull, you will see two
cards in front of you, two cards in front of the other player, and
a pile of chips between the two of you. The pile of chips
between you is the pot; it is the source of the payments.

Your cards are labeled push and pull. You can choose to play
a card by clicking on it with the mouse. When you choose a card
it will be highlighted but your choice will not be final until you
click the confirm choice button. If you choose the pull card,
then you will pull the number of chips on that card from the
pot to your pile of chips. If you choose the push card, then you
will push the number of chips on that card from the pot to the
other player.

Note that the chips that you push or pull come from of the
pot in the middle of the table, not from either player’s pile of
chips. When both players have made their decision to push or
to pull, you will see a message appear telling you what has
happened and your earnings will be displayed. When all
players have made their choices, you will see a panel and a beep

will announce the start of a new round. Click on the OK button
on the panel to start playing the new round.

An Example. Suppose that your push card is a 6 and your pull
card is a 4. Then if you choose to push, the other player will
get six chips from the pot in the middle of the table. If you
choose to pull, then you will get four chips from the pot.

Suppose that the other person has a push card of 7 and a pull
card of 3. Then if he pushes, you will get seven chips from the
pot. If he pulls, you will get no chips from the pot.

The total number of chips that you end up with depends on
the choices made by you and the choices made by the other
player.

Summary Phase 1 of Zenda. Choose to push or pull and click
confirm choice. If you push, the other player gets the number
of chips on your push card; if you pull, you get the number of
chips on your pull card. When you see a dialog box that tells
you the round has ended, click on OK so that the play can
proceed. You will play 15 rounds of phase 1.

Phase 2 of Zenda. In this phase you have a new option that
we call Pay for Push. Everything else about Zenda will be the
same as in phase 1. In particular, during each round of phase
2 you will be randomly paired with another subject each time
you play Zenda.

On your screen you will see a new button labeled confirm
payment and a slider. You can use the slider to offer a payment
to the other player to encourage them to choose to play the
push card.

You set this payment by moving the slider up or down. As
you do this you will move chips from your pile of chips to a pile
in front of the other player. When you are satisfied with your
decision about how much you are willing to pay the other
player, you click on your confirm payment button. Neither
player will see how much the other player is willing to pay until
both players have clicked on their confirm payment button.
Once you’ve seen how much the other player has offered to pay
you to push, you can decide whether to push or to pull. Your
payoff will be as before but now the payment you make will be
subtracted from your pile of chips if the other player chooses
to push. If the other player chooses to pull, then you will get
your payment back. Likewise, if you choose to push, the
payment offered to you by the other player will be added to
your earnings and subtracted from the other player’s earnings.

Summary of Phase 2 of Zenda. In each round of play you will
move your slider to determine how many chips you want to pay
the other player to push. Once you have decided this, you click
on your set payment button. When both players have clicked
their confirm payment button, each will be able to see how
much the other player has offered. At that point, each player
can choose whether to push or pull as before. When both
players have clicked their confirm payment button, each player
sees the payoffs and a new round begins.

You will play 25 rounds of Pay for Push.
Things to Remember.You play against a new person every

time. You should click OK as soon as you have read and
understood a message. You are playing for real money; each
chip is worth 5 cents.

We thank Yan Chen for helpful comments. We are grateful to the
National Science Foundation for financial support.
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