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Abstract

This paper provides uniform convergence results that relate (i) a sequence
in discrete time that is defined inductively with respect to a transition function
and (ii) the solution of a differential initial-value problem in continuous time
that is derived from the same transition function. The results are useful for
characterizing dynamics of some economic models.

1 Introduction

Consider a discrete-time modeling exercise with a solution that can be expressed in-
ductively as a sequence of states on the real line. The model specifies an initial state
x ∈ R, and a period length (step size) ∆ > 0. The solution (the model’s prediction) is
described by a sequence {xk(∆)}∞k=0, where xk denotes the state in period k. Suppose
that the solution is characterized by a function f : R× R→ R, such that

x0(∆) = x and xk+1(∆) = f(xk(∆); ∆) for each k ∈ P ,

where P = {0, 1, 2, . . .} is the set of whole numbers.1

In some settings, it would be inconvenient or difficult to solve for {xk(∆)}. Never-
theless, it may be possible to calculate a continuous-time limit as ∆ → 0+, by using
the transition function to characterize the slope (xk+1 − xk)/∆. Specifically, suppose
that

g(x) ≡ lim
∆→0+

f(x; ∆)− x
∆

(1)

exists for every x. Note that if f is continuously differentiable, then from L’Hôpital’s
rule the limit defining g exists if and only if f(x, 0) = x, and we have g(x) = ∂f

∂∆
(x; 0).

For a given time horizon T > 0, we may look for a solution y : [0, T ] → R to the
differential equation y′ = g(y) with initial value y(0) = x. Here y′ denotes the first
derivative of y. Assuming there is a unique solution to the initial-value problem, a key
issue issue is whether y is a good approximation of {xk(∆)} for small values of ∆. To

∗UC San Diego, https://joelwatson.org. Watson thanks Xiamen Hua, Freddie Papazyan, Joel
Sobel, Maxwell Stinchcombe, and Endre Süli for suggestions and Haitian Xie for research assistance.

1Time-based terminology (such as “period length” rather than “step size”) is used here because it
suits many of the economic applications.
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make this precise, let us convert the sequence into a function that gives the state x as
a function of time t on the continuum, so that it is comparable to y. For simplicity, let
it be the step function defined by

x̂(t; ∆) ≡ x[t/∆](∆),

where for any number w ≥ 0, [w] denotes the largest integer k satisfying k ≤ w. We
are interested in knowing whether x̂(·; ∆) converges to y(t) uniformly in t ∈ [0, T ] as ∆
approaches zero. If so, we can say that the function y well approximates the sequence
{xk(∆)}[T/∆]

k=0 on [0, T ].
This paper examines a general version of the setting just described and establishes

that convergence is assured under appropriate conditions on the primitives that one
would hope to be able to check in applications. In the general setting, xk+1 is a function
of both xk and a number of lagged states xk−1, xk−2, . . . , xk−L for some integer L. The
first L + 1 elements of the sequence are given and can depend on ∆, so long as they
converge to x as ∆→ 0+. Thus the solution sequence is specified by:

x`(∆) given, for ` = 0, 1, . . . , L, and

xk+1(∆) = f(xk(∆), xk−1(∆), . . . , xk−L(∆); ∆) for each k = L,L+ 1, . . .. (2)

The transition function is assumed to be twice continuously differentiable and to satisfy
f(x, x, . . . , x; 0) = x for every x.

Let f0 denote the derivative of f with respect to its first argument, xk, let f1

denote the derivative of f with respect to its second argument, xk−1, and so on up to
fL denoting the derivative with respect to the L + 1 argument, xk−L. Let f∆ denote
the derivative of f with respect to its last argument, ∆. The main theorem presented
here establishes that, with appropriate bounds on fundamentals for states in a suitable
subset of R, x̂(·; ∆) converges uniformly to the function y : [0, T ] → R that solves the
differential equation y′ = g(y) with initial value y(0) = x, where g is defined by

g(x) ≡ f∆(x, x, . . . , x; 0)

1 +
∑L

`=1 ` f`(x, x, . . . , x; 0)
, (3)

for every x. Further, there is a unique solution to the initial-value problem.
The analysis presented here is closely related to the literature on numerical methods

to approximate the solution of an intractable initial-value problem, where the starting
point is a given function g and the goal is to solve the differential equation y′ = g(y).
Euler’s one-step method for approximating the solution is to partition the time interval
[0, T ] and then construct a spline function ẑ whose slope in each sub-interval is given
by g evaluated at the sub-interval’s left bound. For subintervals of equal size ∆,
Euler’s method essentially constructs the sequence {zk(∆)} defined by z0 = x and
zk+1(∆) = zk(∆) + g(zk(∆))∆.

In comparison, this paper examines the reverse direction, where the starting point
is a function f that characterizes the solution of a discrete-time model, and the goal is
to represent its limit as the period length shrinks. Conceptually, it is useful to think
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of both x̂ and ẑ as candidate approximations of y. Standard results in the numerical-
methods literature establish the relation between ẑ and y. The contribution here is to
provide the form of g for a given f and establish convergence of x̂ to y, which in the
proof is actually accomplished by relating x̂ to ẑ. The analysis is complicated by the
fact that xk(∆) is not guaranteed to be close to zk(∆) for possibly many values of k,
due to the arbitrary nature of the initial values x0(∆), x1(∆), . . . , xL(∆). But it turns
out that the approximation becomes incrementally better for large k, and this offsets
the poor approximation for smaller values of k as ∆→ 0+.

Also reported here is a second theorem that allows the state to be a vector in a
Euclidean space Rn but assumes L = 0, so no lagged states are arguments in the
transition function. The functions f , g, and y are now vector-valued. Dispensing with
lagged states makes the extension is easier to describe, and the proof greatly simplified,
in comparison to the main theorem, but it also narrows applicability.

It is natural question to ask whether the second theorem actually subsumes the
main theorem, because we know that any dynamical system with lagged variables can
be transformed into a multidimensional system without lags. The answer is negative,
however, because assumptions needed for convergence in the former setting do not
imply the assumptions needed in the latter setting. The main theorem and its extension
therefore serve different applications. Details are provided following the statement of
the results in the next section.

The results may be useful for applications in four ways. First, they provide a con-
venient characterization of the solution to a discrete-time model when the differential
equation is easier to solve. This can be the case if the function f is difficult to deal
with for positive values of ∆, but derivatives can be calculated at ∆ = 0. Another case
is where one can deal with the function f , yet the initial values x0, x1, . . . , xL depend
on ∆ and are not easily characterized.

Second, the discrete-time model may have multiple solutions, identified by various
combinations of initial values and/or transition functions. In such a case, one may be
able to bound the solutions using a particular transition function and specification of
initial values. Third, even if the discrete-time solution can be computed without much
difficulty, it may be helpful to know that it convergences uniformly as the period length
shrinks.

Finally, the results provide a new option for numerical methods. If the objective is
to characterize a discrete-time dynamical system defined by f(·; ∆) for a small period
length, the results establish that performing Euler’s method using the related function
f is a good approximation.

The main theorem is presented formally in the next section, which begins with
the development of a little intuition. The second theorem is presented at the end
of the section, along with a discussion of the relation between the two results. The
section after describes calculations in four economic examples: a standard growth
model, a model of knowledge acquisition by research and development, a model of
power dynamics, and a recurrent contracting setting with privately information. The
final section contains a proof of the theorem, with six lemmas at the core. There is no
concluding section because it seems unnecessary to include one.
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2 Theorems

Before stating the main theorem, it is useful to present some intuition. Consider the
case of L = 2 and take a point in continuous time t ∈ R+. For any ∆, the period
closest to t is k = [t/∆]. Let us describe the slope

x̂(t+ ∆; ∆)− x̂(t; ∆)

∆
=
xk+1(∆)− xk(∆)

∆

and give a heuristic characterization of the limit as ∆ converges to 0. Using Equation 2,
this slope is

f(xk(∆), xk−1(∆), xk−2(∆); ∆)− xk(∆)

∆
.

For convenience, imagine that xk(∆) is a constant x. The key thing to notice is that
xk−1(∆) and xk−2(∆) change as ∆ approaches 0, and for the discrete-time model to
converge, it must be that xk−1(∆) and xk−2(∆) converge to x.

Then as ∆ approaches 0, its direct effect on the slope is roughly

lim
∆→0+

f(x, x, x; ∆)− x
∆

= f∆(x, x, x; 0).

Its effect through xk−1(∆) is approximately

lim
∆→0+

f(x, xk−1(∆), x; 0)− x
∆

= −f1(x, x, x; 0) · lim
∆→0+

x− xk−1(∆)

∆
,

and its effect through xk−2(∆) is roughly

lim
∆→0+

f(x, x, xk−2(∆); 0)− x
∆

= −f2(x, x, x; 0) · lim
∆→0+

x− xk−2(∆)

∆
.

Writing x − xk−2(∆) =
(
x− xk−1(∆)

)
+
(
xk−1(∆)− xk−2(∆)

)
, we thus conclude

that the slope of y at time t is

g(x) ≡ f∆(x, x, x; 0)− f1(x, x, x; 0) · lim
∆→0+

x− xk−1(∆)

∆

− f2(x, x, x; 0) · lim
∆→0+

(
x− xk−1(∆)

∆
+
xk−1(∆)− xk−2(∆)

∆

)
.

Further, lim∆→0+
(
x− xk−1(∆)

)
/∆ and lim∆→0+

(
x− xk−1(∆)

)
/∆ must be the same

slope g(x). So we have

g(x) = f∆(x, x, x; 0)− f1(x, x, x; 0)g(x)− 2f2(x, x, x; 0)g(x).

Solving for g(x) yields Equation 3 for the case of L = 2.
Observe that in the case of L > 1, the `th lagged state has weight ` in the summation

of derivatives that defines g. For intuition, note that it is the differences between states

4



in prior periods and the state in the current period that affects the magnitude by which
the state changes from the current period to the next. For example, suppose that in
the solution, the state gradually increases over successive periods of time. Then the
difference between xk and xk−2 will be roughly twice the difference between xk and
xk−1; hence the effect of f2 will be roughly twice the effect of f1 in determining the
state in period k + 1, and similarly for larger values of `.

Theorem 1: Take the following as given to define, for every ∆ ∈ R, a sequence of
real numbers denoted {xk(∆)}∞k=0:

• number of lagged states L ∈ P ;
• transition function f : RL+1 × R→ R;
• initial-state functions x` : R→ R for ` = 0, 1, . . . , L;
• limit initial state x ∈ R; and
• time horizon T > 0.

Given ∆, the sequence {xk(∆)}∞k=0 is defined inductively by

xk+1(∆) = f(xk(∆), xk−1(∆), . . . , xk−L(∆); ∆),

for every k ≥ L.

Assumptions: Let X be an open interval of R containing x. Let Γ be an open inter-
val of R containing 0. Assume f is twice continuously differentiable on XL+1 × Γ,
f(x, x, . . . , x; 0) = x for every x ∈ X, and there is a number a < 1 such that∑L

`=1 ` |f`(x, x, . . . , x; 0)| ≤ a for every x ∈ X. Define g : X → R by

g(x) ≡ f∆(x, x, . . . , x; 0)

1 +
∑L

`=1 ` f`(x, x, . . . , x; 0)
.

Suppose there is a number A > 0 such that |g(x)| ≤ A for all x ∈ [x−TA, x+TA] ⊂ X.
Assume also that

(
x`(∆)− x`−1(∆)

)
/∆ is bounded for every ` = 1, 2, . . . , L, and that

x0(∆) converges to x as ∆→ 0+.

Conclusion: Define x̂ : [0, T ]×R++ → R by x̂(t; ∆) ≡ x[t/∆](∆). Then there is a unique
solution y : [0, T ]→ X to the initial-value problem y′ = g(y) with y(0) = x, and x̂( · ; ∆)
converges uniformly to y as ∆→ 0+.

The next result extends the main theorem in the case of L = 0 by allowing the
state to be a vector in Rn. For vector-valued functions, let superscripts refer to the
component of the output vector, hopefully not to be confused with the index of se-
quences. Continue to write subscript ∆ to denote the derivative with respect to ∆
and let prime denote the first derivative of a function of the reals. For differentiable
functions f : Rn × R→ Rn and y : [0, T ]→ Rn, we can therefore write

y(t) =


y1(t)
y2(t)

...
yn(t)

 , y′ =


(y1)′

(y2)′

...
(yn)′

 , and f∆(x; ∆) =


∂f1

∂∆
(x; ∆)

∂f2

∂∆
(x; ∆)
...

∂fn

∂∆
(x; ∆)

 .

5



Let ‖ · ‖ denote the Euclidean norm.

Theorem 2: Let n be a positive integer. Take the following as given to define, for
every ∆ ∈ R, a sequence of vectors in Rn denoted {xk(∆)}∞k=0:

• transition function f : Rn × R→ Rn;
• initial-state function x0 : R→ Rn;
• limit initial state x ∈ Rn; and
• time horizon T > 0.

Given ∆, the sequence {xk(∆)}∞k=0 is defined inductively by xk+1(∆) = f(xk(∆); ∆) for
every k ≥ L.

Assumptions: Let X ⊂ Rn be an open ball containing x. Let Γ be an open interval
of R containing 0. Assume f is twice continuously differentiable on X × Γ, assume
f(x; 0) = x for every x ∈ X, and define g : X → Rn by g(x) ≡ f∆(x; 0). Suppose there
is a number A > 0 such that ‖x − x‖ ≤ TA implies x ∈ X and ‖g(x)‖ ≤ A. Assume
also that x0(∆) converges to x as ∆→ 0+.

Conclusion: Define x̂ : [0, T ] × R++ → Rn by x̂(t; ∆) ≡ x[t/∆](∆). Then there is a
unique solution y : [0, T ]→ X to the initial-value problem y′ = g(y) with y(0) = x, and
x̂( · ; ∆) converges uniformly to y as ∆→ 0+.

One may be inclined to think that Theorem 2 subsumes Theorem 1, because any
dynamical system with lagged variables can be transformed into a multidimensional
system without lags, but this is not the case. Consider, for example, a setting with
L = 1 where xk+1(∆) = f(xk(∆), xk−1(∆); ∆). Suppose the assumptions of Theorem 1
are satisfied. To transform this system into one with no lags, we define a sequence in
R2, denoted {x̃k(∆)}, by specifying

x̃k(∆) =

(
x̃k1(∆)

x̃k2(∆)

)
≡

(
xk(∆)

xk−1(∆)

)
and letting the transition function be

f̃(x̃k; ∆) ≡

(
f(x̃k1(∆), x̃k2(∆); ∆)

x̃k1(∆)

)
.

Note, however, that f̃(x̃; ∆) does not equal x̃ generally, so a key assumption of Theo-
rem 2 do not necessarily hold, and the derivatives f̃ are insufficient for characterizing
the sequence as ∆ becomes small. Evaluating the slope in the second vector component,
(x̃k+1

2 (∆)− x̃k2(∆))/∆, is the same as evaluating (xk(∆)− xk−1(∆))/∆. To provide an
estimate of (xk+1(∆)−xk(∆))/∆, not only must we calculate how f(xk, xk−1; ∆) varies
with ∆ but we also must incorporate how close xk−1 is to xk and thus how f(xk, xk−1; ∆)
varies with xk−1. This shows why settings with L > 0 involve challenging subtleties
and, further, that Theorems 1 and 2 serve different applications.
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3 Examples

Example 1: growth model

Let us start with a trivial example, the neoclassical economic growth model of Solow
(1956) and Swan (1956). The basic model in discrete time yields the following equation
governing the sequence of capital intensity {xk}, where parameter s is the savings rate,
λ is the capital depreciation rate, and function h represents equilibrium utilization of
the production technology:

xk+1 = sh(xk)∆ + (1−∆λ)xk ≡ f(xk; ∆).

Note that in this example the state is a real number and L = 0. We have f(x; 0) = x
and g(x) = f∆(x; 0) = sh(xk) +−λxk.

In the continuous-time version of the model, the state evolves over time according
to the differential equation y′ = f∆(y; 0) = sh(y)− λy. Theorem 1 applies for a given
initial capital intensity and suitable time interval, assuming h is well behaved. The
path of capital intensity over time in the discrete model converges uniformly to the
path identified in the continuous-time model. Thus, the two versions of the model are
consistent not only in terms of the steady states but also in precisely the rate that
capital intensity changes over time from any initial condition.

Example 2: model of knowledge acquisition

Consider a simple setting in which an organization engages in research and development
to build a stock of knowledge capital. Time is in discrete periods k = 0, 1, . . . with
period length ∆. The stock of knowledge at the end of period k is denoted by xk.
The initial stock, at the end of periods 0 and 1, is x0 = x1 ≡ 1. Activity begins in
period 2. In each period k + 1, managers of the organization allocate any amount of
their existing capital to fund projects that will increase the stock.

Two projects are available, an existing project whose returns depend on the recent
rate that knowledge has been increasing, (xk−xk−1)/∆, and a new project whose returns
depend on the stock xk at the beginning of the period. An amount wE allocated to the
existing project returns capital in the amount of

2(wE∆β)
1
2 ·
(
xk − xk−1

∆

) 1
2

,

whereas wN allocated to the new project generates

2(wN∆αxk)
1
2 ,

for a total gain of

h(wE, wN, x
k, xk−1; ∆) = 2(wE∆β)

1
2 ·
(
xk − xk−1

∆

) 1
2

+ 2(wN∆αxk)
1
2 − wE − wN.
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The superscript on x refers to the period, whereas the other superscripts are exponents,
and parameters α and β are positive numbers. Decreasing returns are implied by wE

and wN having the exponent 1/2. The inclusion of ∆1/2 in these production terms is
needed to appropriately scale by period length, so that optimal choices in a period of
length ∆ imply a capital gain that is ∆ times the gain for a period of length one.

Our objective is to characterize the capital stock over time under the assumption
that management maximizes growth in each period. The first-order conditions for
maximization yield optimal allocations w∗E = β(xk − xk−1) and w∗N = α∆xk, and we
obtain h(w∗E, w

∗
N, x

k, xk−1; ∆) = β(xk − xk−1) + α∆xk. We have L = 1 and the capital
stock transition is given by xk+1 = f(xk, xk−1; ∆) where

f(xk, xk−1; ∆) ≡ xk + β(xk − xk−1) + α∆xk.

Note that f∆(x, x; 0) = αx and f1(x, x; 0) = −β.
The set X can be taken to be any open, bounded interval that contains 1. For

a suitably short time horizon T , Theorem 1 applies assuming β < 1. Then x̂(·; ∆)
is uniformly approximated by y : [0, T ] → R solving y′ = g(y) = αy/(1 − β) with
initial value y(0) = 1. Integrating yields y(t) = eαt/(1−β). Relative dynamics of new
and existing project investments are easily derived. In the case of β > 1, returns of
the existing project imply that the capital stock increases on order greater than ∆,
implying the model is not well behaved as the period length becomes small, and the
continuous-time model is not well defined.

Example 3: model of power dynamics

Here is an example of power dynamics between generations of competing political
actors, similar to the model of Acemoglu and Robinson (2018). The model is discrete-
time noncooperative game in which, in each of an infinite number of periods, players 1
and 2 choose how much to invest into their respective stocks of power. The power of
player i ∈ {1, 2} in period k is denoted xki and its transition to period k + 1 is given
by xk+1

i = xki (1−∆λ) + qk+1
i , where qk+1

i is player i’s investment in period k + 1 and
λ is a parameter measuring the natural depletion rate of power. Player i’s payoff in
period k + 1 is

uk+1
i = αxk+1

i + βxk+1
j + γxk+1

i xk+1
j − (qk+1

i )2

2∆
,

where the last term is player i’s investment cost (normalized by the period length) and
the first three terms capture player i’s benefit of power in relation to the power of the
other player, denoted xk+1

j . Numbers α, β, and γ are parameters.
Let us assume that the players in period k + 1 care only about the benefits and

costs in this period, so player 1 chooses qk+1
1 to maximize uk+1

1 and player 2 chooses
qk+1

2 to maximize uk+1
2 . Each player’s optimal investment is a function of the other

player’s investment and the given levels xk1 and xk2 from the previous period. Solving
the system of these two best-response functions identifies the unique Nash equilibrium
for interaction in period k, which yields the following expression for the transition of
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power:

xk+1 =

(
xk+1

1

xk+1
2

)
= f(xk; ∆)

=


[
1− λ∆ + γ2∆2(1−∆λ)

1−γ2∆2

]
xk1 +

[
γ∆(1−∆λ)

1−γ2∆2

]
xk2 +

[
α∆+αγ∆2

1−γ2∆2

]
[
1− λ∆ + γ2∆2(1−∆λ)

1−γ2∆2

]
xk2 +

[
γ∆(1−∆λ)

1−γ2∆2

]
xk1 +

[
α∆+αγ∆2

1−γ2∆2

]
 .

Theorem 2 applies for this example, as we have a setting in which the state is in
R2 and there are no lagged states in the transition function. Note that

f∆(x; 0) =

(
−λx1 + γx2 + α

γx1 − λx2 + α

)
,

and so the related system of differential equations is given by

y′ =

(
y′1
y′2

)
=

(
−λ γ

γ −λ

)(
y1

y2

)
+

(
α

α

)
≡My +Q.

Using the matrix-exponential method, any solution can be written in the form

y(t) = eMtx+ eMt

∫ t

0

e−rMQdr,

where x is the vector of initial power levels. Diagonalization of M allows us to write
the solution directly by calculating the exponential of a diagonal matrix. This works
if γ 6= −λ. Taking the case of γ > 0 for illustration, the eigenvalues of M are −λ− γ
and γ − λ, and

(
1 1
−1 1

)
is a matrix of eigenvectors. After a few mathematical steps,

we obtain:

yi(t) = 1
2

(
e−(λ+γ)t + e(γ−λ)t

)
xi + 1

2

(
e(γ−λ)t − e−(λ+γ)t

)
xj + α

γ−λe
(γ−λ)t

(
e(γ−λ)t − 1

)
,

for i ∈ {1, 2}. The discrete-time dynamics converge uniformly to the continuous-time
version.

Example 4: model of starting small in a relationship

The discrete-time, incomplete-information model of Hua and Watson (2020), which
continues the line of research on “starting small” initiated by Watson (1999, 2002), uti-
lizes Theorem 1 to characterize upper and lower bounds on the set of perfect Bayesian
equilibria (PBE). The model features a principal and agent who interact over an infi-
nite number of discrete periods. The period length is denoted ∆ as usual. Before the
first period, nature chooses the agent’s type w ∈ R+ according to a distribution that
puts some probability on 0 (the “good” type) and the remaining probability uniformly
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on an interval [w, w̄] (the “bad” types), where w > 1. The agent privately observes
her type. In each period k, the principal chooses a level of trust α ∈ [0, 1] and the
agent, observing α, then decides whether to cooperate or betray. Cooperation leads to
the payoff of α∆ for both players. Betrayal yields −cα to the principal and αw to the
agent, where c > 0, and effectively the game ends. The interest rate is 1, implying a
discount factor of e−∆.

For ∆ close to zero, cooperation at the highest level (or at any positive level) could
be sustained in a complete-information environment if and only if w = 0. This is
because, at any constant level α, betraying to get αw is more attractive for the agent
than is cooperating forever, which pays α∆/(1− e−∆), if and only if w < 1. It follows
that in any “cooperative PBE,” in which the good type cooperates forever, all bad
types betray in bounded time. Further, higher types betray earlier than do lower
types. Under an additional condition relating to renegotiation by the principal, every
cooperative PBE can be characterized by an integer K ∈ P , an equilibrium sequence
of levels {αk}∞k=1, and the equilibrium sequence of “cutoff types” {wk}∞k=1, with the
properties described next.

The number αk is the level that the principal chooses in period k on the equilibrium
path, conditional on the agent cooperating through period k − 1. Sequence {αk} is
strictly increasing through period K + 1, and then αK+1 = αK+2 = αK+3 = · · · = 1.
Sequence {wk} is strictly decreasing until period K, when it falls below 1 and then
remains constant. In the PBE, for each k ∈ P , types in the interval (wk−1, wk] betray
in period k. Further, in any period k < K, type wk is indifferent between betraying
in period k and waiting to betray in period k + 1, which is captured by the following
equation:

αkwk = αk∆ + e−∆αk+1wk. (4)

The renegotiation condition also jointly constrains the rates at which {αk} increases,
{wk} decreases, and player 1’s continuation value changes over time.

Hua and Watson (2020) characterize the set of cooperative PBE that satisfy their
renegotiation condition, in the limit as the period length ∆ approaches zero. The
analysis is quite complicated and so the mathematical expressions are not presented
here, but it is useful to note how Theorem 1 is utilized. The authors are able to combine
conditions such as Equation 4, equilibrium identities, and the renegotiation concept
to derive bounds on {wk}, specifically (i) an upper bound on wk−1 as a function of
xk and ∆ and (ii) a lower bound on wk−1 as a function of xk, xk+1, and ∆. The first
defines a sequence with transition wk−1 = f̄(wk; ∆) and the second defines a sequence
with transition wk−1 = f(wk, wk+1; ∆). Letting {xk}Kk=0 be given by xk = wK−k,
the bounding sequences are put in the form described here. Although the transition
functions are complicated and require implicit differentiation, the authors show that
Theorem 1 applies for both f̄ and f , and interestingly these functions have the same
limit differential equation. Therefore, the equilibrium is unique in the limit.
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4 Proofs

4.1 Proof the Main Theorem

This section contains a proof of Theorem 1. It is somewhat involved and is developed
through a series of six lemmas.

Define Γ++ ≡ Γ ∩ R++. Let the collection of sequences {xk(∆)} for ∆ ∈ Γ++ be
derived from function f , with initial values x0(∆), x1(∆), . . . , xL(∆), as described in
the Theorem, and let x̂× Γ++ : [0, T ]→ X be defined by x̂(t; ∆) ≡ x[t/∆](∆). Let PM

K

denote the subset of integers {K,K + 1, K + 2, . . . ,M} and let PK ≡ {K,K + 1, K +
2, . . .}.

Because X is open, there exists a number ξ > TA such that Y ≡ [x−ξ, x+ξ] ⊂ X,
and so we have [x− TA, x+ TA] ⊂ Y ⊂ X. Let γ be any number in Γ++. Because f
is twice continuously differentiable, its first and second derivatives are bounded on the
domain Y L+1 × [0, γ]. Since

∑L
`=1 ` |f`(x, x, . . . , x; 0)| ≤ a, we have that g and g′ are

also bounded on Y . Let B be a number that serves as a bound for all of the bounded
items. That is, on domain Y L+1 × [0, γ], the first and second derivatives of f are all
between −B and B. Similarly |g(x)| ≤ B and |g′(x)| ≤ B for every x ∈ Y . Also,∣∣x`(∆)− x`−1(∆)

∣∣ /∆ ≤ B for ∆ ∈ (0, γ) and ` ∈ PL
1 . Additionally, let

S(∆) ≡ max{k ∈ P [T/∆]
0 | xi ∈ Y for all i ≤ k}.

Most of the steps in this proof will constrain attention to periods 0, 1, . . . , S(∆), where
the state is in Y .

We will compare {xk(∆)}[T/∆]+1
k=0 with another sequence {zk(∆)}[T/∆]+1

k=0 that is de-
fined by the natural discrete-time approximation of y using the known derivative g:

z0(∆) = x and zk+1(∆) = zk(∆) + g(zk(∆))∆ for each k ∈ P [T/∆]
0 . (5)

We translate this sequence into a step function of continuous time, ẑ : [0, T ]×R++ → X,
by ẑ(t; ∆) ≡ z[t/∆](∆).

In the analysis to follow, ∆ is always taken to be in (0, γ). Because it would
be cumbersome in the notation to make explicit the dependence of xk and zk on ∆
(by always writing “xk(∆)” for instance), this dependence is suppressed in most of the
expressions below. Also, for any k ∈ PL, let φk ≡ (xk, xk−1, . . . , xk−L) denote the vector
of states in order from period k back to period k − L, and let θk ≡ (xk, xk, . . . , xk) be
the corresponding vector signifying value xk repeated L+ 1 times.

The proof proceeds in a series of steps, combining standard methods (Taylor ap-
proximations and the like) with a fairly intricate construction in the end. Lemma 1
establishes the first claim, that the initial-value problem has a unique solution, and
Lemma 2 establishes that ẑ(·; ∆) converges uniformly to y as ∆ → 0+. Lemmas 3–5

then identify key properties of {xk(∆)}S(∆)+1
k=0 and {zk(∆)}S(∆)+1

k=0 . Lemma 6 shows

that {xk(∆)}S(∆)+1
k=0 and {zk(∆)}S(∆)+1

k=0 converge uniformly as ∆ → 0+; the proof
uses Lemmas 3 and 4 along with some novel calculations. Finally, we establish that
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S(∆) = [T/∆] for ∆ sufficiently small, which implies that the convergence result holds
for the entire interval [0, T ] in continuous time.

Lemma 1: There is a unique solution y : [0, T ] → X to the initial-value problem
y′ = g(y) with y(0) = x.

Proof of Lemma 1: Existence of a unique solution follows from Picard’s Theorem (see,
for instance, Süli and Mayers 2003). The requirement’s of Picard’s Theorem are verified
as follows. The relevant interval of states is X ≡ [x − TA, x + TA]. Function g
is continuous because the derivatives of f are continuous, and |g| is bounded by A.
Because g is differentiable and |g′| is bounded by B, it is the case that |g(x)− g(x′)| ≤
B|x − x′| for all x, x′ ∈ X (Lipschitz continuity). Finally, the inequality TAB ≥
A
(
eBT − 1

)
holds, regardless of the values of B and T .

Lemma 2: ẑ(·; ∆) converges to y uniformly on [0, T ] as ∆→ 0+.

Proof of Lemma 2: This lemma is a trivial extension of a standard convergence result
for Euler’s one-step approximation of the solution of an initial-value problem (see, for
instance, Süli and Mayers 2003, pages 317–323), and so a proof is not shown here. The
requirement that g satisfies a Lipschitz condition follows from g being continuously
differential on Y , which is implied by f being twice continuously differentiable on X.
The extension here is just to put the result in terms of the step function ẑ, which uses
the fact that |g| < A.

Lemma 3: For any given D > B/(1− a), there exists a number ∆̆ ∈ (0, γ) such that

|xk(∆)− xk−1(∆)| ≤ D∆ for every ∆ ∈ (0, ∆̆) and every k ∈ P S(∆)+1
1 . Furthermore,

S(∆) ≥ [AT/D∆].

Proof of Lemma 3: Define constant B1 ≡ BL3D2 +B(L+1)L2D+B and let ∆̃ be the
number that satisfies B + ∆̃B1 = D(1 − a). Note that ∆̃ is strictly positive because
D > B/(1 − a). Define sequence {bk(∆)}∞k=1 inductively by bk(∆) ≡ B∆ for each
k = 1, 2, . . . , L, and

bk+1(∆) ≡ abk(∆) +D(1− a)∆

for each k ∈ PL+1. Note that, because a ∈ [0, 1), this sequence is weakly increasing
and converges to D∆. In fact, for k ≥ L,

bk(∆) = D∆− (D∆−B∆) ak−L.

We will show that |xk − xk−1| ≤ bk(∆) for every k ∈ P S(∆)+1
1 . This condition holds by

assumption for k ≤ L, so we have to establish the same for k > L.
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The sequence of states is defined so that xk+1 = f(φk; ∆) for every k ∈ P [T/∆]
L . We

can use the first-degree Taylor polynomial centered at (θk; 0) to write

f(φk; ∆) = f(θk; 0) +
L∑
`=1

f`(θ
k; 0)(xk−` − xk) + f∆(θk; 0)∆ + E2(k,∆),

where E2(k,∆) is 1/2 times the Hessian matrix of f evaluated at some point (φ̃k; ∆̃k)
between (φk; ∆) and (θk; 0), pre- and post-multiplied by the vector (φk − θk; ∆). Note
that there is no term for the derivative of f with respect to its first argument because
the first components of φk and θk are both xk. Noting that f(θk; 0) = xk, we have:

xk+1 − xk =
L∑
`=1

f`(θ
k; 0)(xk−` − xk) + f∆(θk; 0)∆ + E2(k,∆). (6)

An inductive step establishes that |xk−xk−1| ≤ bk for ∆ < ∆̃ and every k ∈ P S(∆)+1
L .

Suppose k ≤ S(∆) and |xk′ − xk′−1| ≤ bk
′

for every k′ ≤ k, as is the case for k = L.
Using the triangle inequality and that the sequence of bounds is increasing, we then
have that ∣∣xk−` − xk∣∣ ≤ bk(∆) + bk−1(∆) + · · ·+ bk−`+1(∆) ≤ ` bk(∆).

This gives us a bound on the magnitude of the summation term in Equation 6:∣∣∣∣∣
L∑
`=1

f`(θ
k; 0)(xk−` − xk)

∣∣∣∣∣ ≤
L∑
`=1

`
∣∣f`(θk; 0)

∣∣ bk(∆) ≤ abk(∆).

We can similarly bound the second and third terms on the right side of Equation 6.
Since xk ∈ Y , we have that |f∆(θk; 0)| ≤ B. Regarding the error term E2(k,∆),
because k ≤ S(∆) and (φ̃k; ∆̃k) is between points in {x0, x1, . . . , xk}, we know that
(φ̃k; ∆̃k) ∈ Y , where each of the second derivatives of f is bounded by B. Therefore
the numbers in the Hessian matrix for E2(k,∆) are all bounded by B and −B, implying∣∣E2(i,∆)

∣∣ ≤ BLω(k,∆)2 +B(L+ 1)Lω(k,∆)∆ +B∆2,

where ω(k,∆) ≡ max`=1,2,...,L |xk−`−xk|. Note that ω(k,∆) ≤ Lbk ≤ LD∆. Therefore,∣∣E2(i,∆)
∣∣ ≤ BL3D2∆2 +B(L+ 1)L2D∆2 +B∆2 = B1∆2 < B1∆̃∆.

Taking absolute values of the terms in Equation 6 and applying the bound on the
magnitudes of each term on the right, we obtain∣∣xk+1 − xk

∣∣ ≤ abk(∆) +B∆ +B1∆̃∆ ≤ abk(∆) +D(1− a)∆ = bk+1(∆).

Thus, bk+1(∆) is a valid bound on |xk+1 − xk|, completing the inductive argument.
Because bk(∆) < D∆ for all k, we have thus shown that |xk(∆)− xk−1(∆)| < D∆

for every k ∈ P S(∆)+1
1 and ∆ ∈ (0, ∆̃).
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On the second claim, recall that x0(∆) converges to x as ∆ → 0+. Let ∆̆ be any
number in the interval (0,min{∆̃, γ}) for which ∆ < ∆̆ implies |x0(∆)− x| < ξ −AT .
By the triangle inequality, we then have |xk−x| ≤ D∆k+ ξ−AT , and so |xk−x| ≤ ξ
for each k ≤ [AT/D∆], which from the definition of Y implies S(∆) ≥ [AT/D∆].

For the next lemma and analysis to follow, we will bound the difference between
(xi(∆)− xi−1(∆)) /∆ and g(xk(∆)) for values of i and k between 1 and S(∆) + 1,
where k is between i− 1 and i+ L− 1. To ease notation, define

Q(T,∆) ≡
{

(i, k)
∣∣∣ i ∈ P S(∆)+1

1 , k ∈ P S(∆)+1
0 , and i− 1 ≤ k ≤ i+ L− 1

}
.

Then for any (i, k) ∈ Q(T,∆), define

mi,k(∆) ≡ xi(∆)− xi−1(∆)

∆
− g(xk(∆)).

Lemma 4: There exist a number C, a number ∆̄ > 0, and a decreasing function
κ : (0, ∆̄)→ R+ such that the following holds for all ∆ < ∆̄. First, |mi,k(∆)| ≤ C∆ for
all (i, k) ∈ Q(T,∆) satisfying i > κ(∆). Second, |mi,k(∆)| ≤ C for all (i, k) ∈ Q(T,∆)
satisfying i ≤ κ(∆). Third, ∆κ(∆) converges to 0 as ∆→ 0+.

Proof of Lemma 4: Let D and ∆̆ be any values that satisfy the claim of Lemma 3 and
let us make ∆̆ small enough so that [AT/D∆̆] > 2L (as the lemma allows).

For every ∆ < ∆̆ we will construct a bounding sequence {bi(∆)}∞i=1, such that for
∆ small enough, |mi,k(∆)| ≤ bi(∆) for all (i, k) ∈ Q(T,∆). Let us first deal with i ≤ L
and then with i > L.

Because S(∆) > 2L, we know that xk ∈ Y and thus |g(xk)| ≤ B for each k ∈ P 2L
0 .

Also, from Lemma 3, we have that |xi − xi−1| /∆ ≤ D for i ≤ S(∆). Thus, for
(i, k) ∈ Q(T,∆) with i ≤ L, we have that |mi,k(∆)| ≤ B + D. Let us therefore set
bi(∆) ≡ B +D for i = 1, 2, . . . , L.

The bounds for i > L are set using an iterative procedure. To reach the inductive
expression, several calculations are required. Consider any (i, k) ∈ Q(T,∆) with i > L.
By the definition of g and that xi = f(φi−1; ∆), we have

mi,k(∆) =
f(φi−1; ∆)− xi−1

∆
− g(xk). (7)

Let us substitute for f(φi−1; ∆) and g(xk) using Taylor polynomials.
Regarding f(φi−1; ∆), we can use the first-degree Taylor polynomial centered at

(θi−1; 0) to write

f(φi−1; ∆) = f(θi−1; 0) +
L∑
`=1

f`(θ
i−1; 0)(xi−1−` − xi−1) + f∆(θi−1; 0)∆ + E2(i,∆),
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where E2(i,∆) has the same form as in the proof of Lemma 3 and satisfies

|E2(i,∆)| ≤ BLω(i− 1,∆)2 +B(L+ 1)Lω(i− 1,∆)∆ +B∆2

= BL∆2 ·
(
ω(i− 1,∆)

∆

)2

+B(L+ 1)L∆2 · ω(i− 1,∆)

∆
+B∆2,

for ω defined as before, so ω(i− 1,∆) ≡ max`=1,2,...,L |xi−1−`(∆)− xi−1(∆)|. Lemma 3
establishes a uniform bound on ω(i− 1,∆)/∆, namely DL, and hence

|E2(i,∆)| ≤ B1∆2

where B1 is the same constant defined in the proof of Lemma 3.
Regarding g(xk), we can use the zero-degree Taylor approximation centered at xi−1

to write g(xk) = g(xi−1) + E1(i, k,∆), where E1(i, k,∆) = g′(x̃)(xk − xi−1) for some
number x̃ between xk and xi−1. Because (i, k) ∈ Q(T,∆), we know that |xk − xi−1| ≤
DL∆ from Lemma 3. Since |g′| on domain Y is bounded by B, it is therefore the case
that

|E1(i, k,∆)| ≤ BDL∆.

Let us next plug into Equation 7 the expressions for f(φi−1; ∆) and g(xk) that we
just derived. Using the fact that f(θi−1; 0) = xi−1 and g(xi−1) = f∆(θi−1; 0)/(1 +∑L

`=1 ` f`(θ
i−1; 0)), we obtain:

mi,k(∆) =
f(φi−1; ∆)− xi−1

∆
− g(xk)

=
L∑
`=1

f`(θ
i−1; 0)

(
xi−1−` − xi−1

∆

)
+ f∆(θi−1; 0)− g(xi−1)

+
E2(i,∆)

∆
− E1(k, i,∆)

=
L∑
`=1

f`(θ
i−1; 0)

(
xi−1−` − xi−1

∆

)
+ g(xi−1)

L∑
`=1

`f`(θ
i−1; 0)

+
E2(i,∆)

∆
− E1(i, k,∆).

Noting that xi−1−xi−1−` =
∑i−1

j=i−` (xj−xj−1), where j takes ` values, we can rearrange
terms to obtain

mi,k(∆) = −
L∑
`=1

f`(θ
i−1; 0) ·

i−1∑
j=i−`

(
xj − xj−1

∆
− g(xi−1)

)
+
E2(i,∆)

∆
− E1(i, k,∆)

= −
L∑
`=1

f`(θ
i−1; 0) ·

i−1∑
j=i−`

mj, i−1(∆) +
E2(i,∆)

∆
− E1(i, k,∆).
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Taking absolute values and defining c ≡ B1 +BDL to combine the bounds on the error
terms, the last equation implies

|mi,k(∆)| ≤
L∑
`=1

|f`(θi−1; 0)| ·
i−1∑
j=i−`

|mj, i−1(∆)|+ c∆.

Define µi−1(∆) ≡ max{|mi−L, i−1(∆)|, |mi−L+1, i−1(∆)|, . . . , |mi−1, i−1(∆)|}. Substitut-
ing µi−1(∆) for |mj, i−1(∆)| in the previous inequality yields

|mi,k(∆)| ≤
L∑
`=1

` |f`(θi−1; 0)|µi−1(∆) + c∆,

and recalling that
∑L

`=1 ` |f`(θi−1; 0)| < a < 1, we conclude that

|mi,k(∆)| ≤ a µi−1(∆) + c∆. (8)

The inductive step to define bi(∆) for i > L is based on Inequality 8. Recall that
we have set b1(∆) = b2(∆) = · · · = bL(∆) ≡ B +D. For every i ∈ PL+1, let us set

bi(∆) ≡ abi−L(∆) + c∆.

Note that {bi(∆)} comprises blocks of length L where the value is the same in each
block. That is, for each n ∈ P1, we have

bnL+1(∆) = bnL+2(∆) = · · · = b(n+1)L(∆) ≡ abnL(∆) + c∆.

Let ∆̄ be any number in the interval (0,min{∆̆, (B + D)(1 − a)/c}). For ∆ < ∆̄,
the equation b = ab+ c∆ is solved by the value b = c∆/(1−a) that is less than B+C,
implying that the sequence {bi(∆)} is weakly decreasing and converges to c∆/(1− a).
In fact, we have

b(n+1)L(∆) =
c∆

1− a
+

(
B +D − c∆

1− a

)
an

for each n ∈ P .
We next have an inductive step to validate that {bi(∆)} provides the desired bounds.

Consider any i ∈ P S(∆)+1
L+1 for which |mi′,k′(∆)| ≤ bi

′
(∆) for all (i′, k′) ∈ Q(T,∆) such

that i′ < i. (We have already shown that the presumption holds for i = L + 1.) That
{bi′(∆)} is weakly decreasing implies that µi−1(∆) ≤ bi−L(∆). From Inequality 8,
this further implies that |mi,k(∆)| ≤ abi−L(∆) + c∆ = bi(∆) for all k ∈ P satisfying
(i, k) ∈ Q(T, |De), validating the bound for i.

So we have proven that |mi,k(∆)| ≤ bi(∆) for all (i, k) ∈ Q(T,∆). The final step of
the proof is to show that {bi(∆)}∞i=1 has the three stated properties for ∆ close enough
to 0. The idea is to characterize at which period bi(∆) crosses a threshold multiple of
its limit. Letting the multiple be 2, define function β so that, for every ∆,

c∆

1− a
+

(
B +D − c∆

1− a

)
aβ(∆) =

2c∆

1− a
.
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That is, letting ρ(∆) ≡ c∆
1−a /

(
B +D − c∆

1−a

)
, we have aβ(∆) = ρ(∆), and therefore

β(∆) = ln ρ(∆)/ ln a. Then bi(∆) ≤ 2c∆/(1− a) for every i > (β(∆) + 1)L.
Define κ(∆) ≡ (β(∆) + 1)L and let C = max{2c/(1 − a), B + D}. We showed in

the previous paragraph that bi(∆) < C∆ for every i > κ(∆), proving the first claim
of Lemma 4. The second claim follows from the fact that b1(∆) = B +D and {bi(∆)}
is decreasing. Straightforward calculations show that lim∆→0+ ∆ ln ρ(∆) = 0 (using
L’Hôpital’s rule), which proves the third claim.

Lemma 5: |zk(∆)− x| ≤ kA∆ for each k ∈ P [T/∆]+1
0 .

Proof of Lemma 5: This follows directly from Expression 5 and that |g| is bounded
above by A on domain [x− TA, x+ TA].

With the previous lemmas in hand, the next lemma goes most of the way toward
proving Theorem 1 by constructing a uniform upper bound on

∣∣xk(∆)− zk(∆)
∣∣ for

each k ∈ P S(∆)+1
0 .

Lemma 6: For any given ε > 0 there exists a number η > 0 such that ∆ ∈ (0, η)

implies
∣∣xk(∆)− zk(∆)

∣∣ < ε for all k ∈ P S(∆)+1
0 .

Proof of Lemma 6: Let D and ∆̄ be any values that satisfy the claims of Lemmas 3
and 4 (with ∆̄ ≤ ∆̆). Let us start by formulating a bound for k ∈ P

S(∆)+1
1 with

k ≤ [κ(∆)] +L, where κ(∆) is defined by Lemma 4. We’ll then assess all larger values
of k using an inductive argument.

Invoking Lemma 3 for k ≤ [κ(∆)] + L, we have

|xk − x0| ≤ ([κ(∆)] + L)D∆.

Likewise, Lemma 5 implies that

|zk − x| ≤ ([κ(∆)] + L)B∆.

From Lemma 4 we know that ∆κ(∆) converges to 0, implying that the right sides of
both of these inequalities converge to 0 as ∆→ 0+. Recall as well that x0(∆) converges
to x. These facts together imply that there exists a function λ : R→ R such that, for
∆ < ∆̄, it is the case that |xk(∆)− zk(∆)| ≤ λ(∆) for every k ≤ [κ(∆)] +L, and λ(∆)
converges to 0 as ∆→ 0+.

Next let us look at values of k greater than [κ(∆)] + L. A key step is figuring how
to write xk+1 − zk+1 as a function of xk − zk. Using Equations 5 and 2, we have

xk+1(∆)− zk+1(∆) = f(φk; ∆)− zk(∆)− g(zk(∆))∆.
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Substituting for f(φk; ∆) using the first-degree Taylor polynomial centered at (θk; 0),
and using f(θk; 0) = xk and the identity

g(x) ≡ f∆(x, x, . . . , x; 0)

1 +
∑L

`=1 ` f`(x, x, . . . , x; 0)

to substitute terms, we obtain

xk+1 − zk+1 = f(θk; 0) +
L∑
`=1

f`(θ
k; 0)(xk−` − xk) + f∆(θk; 0)∆ + E2(k,∆)

−zk − g(zk)∆

= xk − zk +
L∑
`=1

f`(θ
k; 0)(xk−` − xk) + f∆(θk; 0)∆− g(xk)∆

+
[
g(xk)− g(zk)

]
∆ + E2(k,∆)

= xk − zk +
L∑
`=1

f`(θ
k; 0)(xk−` − xk) + g(xk)∆

L∑
`=1

`f`(θ
k; 0)

+
[
g(xk)− g(zk)

]
∆ + E2(k,∆),

where the error term E2(k,∆) is characterized as in the proofs of the previous two
lemmas; that is, for the constant B1 defined before,

|E2(k,∆)| ≤ B1∆2.

Let us deal with the term xk−` − xk also along the lines of the proof of Lemma 4.
Noting that xk − xk−` =

∑k
i=k−`+1 (xi − xi−1), where i takes ` values, we rearrange

terms to obtain

xk+1 − zk+1 = xk − zk −∆
L∑
`=1

f`(θ
k; 0) ·

k∑
i=k−`+1

(
xi − xi−1

∆
− g(xk)

)
+
[
g(xk)− g(zk)

]
∆ + E2(k,∆)

= xk − zk −∆
L∑
`=1

f`(θ
k; 0) ·

k∑
i=k−`+1

mi,k(∆)

+
[
g(xk)− g(zk)

]
∆ + E2(k,∆).

Next use the zero-degree Taylor approximation for g, centered at zk, to write

g(xk) = g(zk) + g′(x̃k)(xk − zk),

where x̃k is a number between xk and zk. Because xk and zk are in Y , so is x̃k and
therefore |g′(x̃k)| ≤ B. Substituting for g(xk) in the expression for xk+1 − zk+1, using
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the definition of mi,k, and rearranging terms, we obtain

xk+1 − zk+1 = (xk − zk)
(
1 + g′(x̃k)∆

)
−∆

L∑
`=1

f`(θ
k; 0) ·

k∑
i=k−`+1

mi,k(∆) + E2(k,∆). (9)

For k ≥ κ(∆) + L, it is the case that i > κ(∆) in the summation of mi,k on the right
and so, from Lemma 4, |mi,k(∆)| ≤ C∆. In this summation, i takes ` values, and
therefore |

∑k
i=k−`+1m

i,k(∆)| ≤ ` C∆, which implies:∣∣∣∣∣∆
L∑
`=1

f`(θ
k; 0) ·

k∑
i=k−`+1

mi,k(∆)

∣∣∣∣∣ ≤ C∆2

L∑
`=1

`|f`(θk; 0)| ≤ aC∆2.

Taking absolute values of all components of Equation 9 and using the bounds on
|E2(k,∆)| and |g′(x̃k)|, we obtain:

|xk+1 − zk+1| ≤ |xk − zk| (1 +B∆) + aC∆2 +B1∆2. (10)

Rearranging terms yields:

∣∣xk+1 − zk+1
∣∣+

aC +B1

B
∆ ≤ (1 +B∆)

(∣∣xk − zk∣∣+
aC +B1

B
∆

)
.

By induction, we have for κ(∆) + L ≤ k ≤ S(∆) + 1,

∣∣xk+1 − zk+1
∣∣+

aC +B1

B
∆ ≤ (1 +B∆)k−(κ(∆)+L)

(∣∣xκ(∆)+L − zκ(∆)+L
∣∣+

aC +B1

B
∆

)
≤ (1 +B∆)[T/∆]+1

(∣∣xκ(∆)+L − zκ(∆)+L
∣∣+

aC +B1

B
∆

)
.

Since
∣∣xκ(∆)+L − zκ(∆)+L

∣∣ ≤ λ(∆), we know that

∣∣xk − zk∣∣ ≤ (1 +B∆)[T/∆]+1 λ(∆) +
(

(1 +B∆)[T/∆]+1 − 1
)(aC +B1

B
∆

)
.

The right-hand side is a uniform upper bound that does not depend on k, and it
converges to zero as ∆→ 0 since (1 +B∆)[T/∆]+1 → eBT and λ(∆)→ 0.

Because step functions x̂ and ẑ are defined in the same manner relative to sequences
{zk(∆)}[T/∆]+1

k=0 and {xk(∆)}[T/∆]+1
k=0 , Lemma 6 establishes that x̂ and ẑ converge uni-

formly on [0, t̄] for every number t̄ > 0 for which S(∆)∆ weakly exceeds t̄ for sufficiently
small ∆. From Lemma 3, we know this is the case for t̄ = AT/D.
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In fact, it must also be the case for t̄ = T . To show this, let us presume otherwise
and we shall find a contradiction. Suppose lim inf∆→0+ S(∆)∆ < T . Then there
exists ε0 > 0 such that for every ∆̂ > 0 there is a number ∆ ∈ (0, ∆̂) for which
S(∆)∆ < T − ε0. Using Lemma 5, we thus have

∣∣zS(∆) − x
∣∣ ≤ AS(∆)∆ < AT − Aε0.

By Lemmas 3 and 5 we know that both
∣∣xS(∆)+1 − xS(∆)

∣∣ and
∣∣zS(∆) − xS(∆)

∣∣ can be

made arbitrarily small by taking ∆̂ sufficiently small. Therefore, the triangle inequality
implies ∣∣xS(∆)+1 − x

∣∣ ≤ ∣∣xS(∆)+1 − xS(∆)
∣∣+
∣∣zS(∆) − xS(∆)

∣∣+
∣∣zS(∆) − x

∣∣ < AT

for sufficiently small ∆̂. This implies that xS(∆)+1(∆) ∈ [x − AT, x + AT ] for some
values of ∆, contradicting the definition of S(∆).

We have proved that x̂ and ẑ converge uniformly on [0, T ]. Lemma 2 established
the uniform convergence of ẑ to y on [0, T ], and therefore x̂ also converges uniformly
to y on [0, T ].

4.2 Proof of the Second Theorem

This section contains a proof of Theorem 2. The steps of this proof are straightforward
modifications of a small subset of steps shown for Theorem 1, so I informally summarize
them here.

Lemmas 1 and 2 extend to an n-component system of differential equations by
simply replacing the absolute value sign with the Euclidean norm (see, for instance,
Süli and Mayers 2003 and Coddington and Levinson 1955). So what is left is to prove

that {xk(∆)}S(∆)+1
k=0 and {zk(∆)}S(∆)+1

k=0 converge. The complicated arguments used in
the proof of the main theorem are not needed for the present proof because they had
mainly to do with the lagged states (L > 0). In place of Lemmas 3-6, we can proceed
with a direct comparison of the two sequences and construct bounds via induction.

As in the proof of the main theorem, we can find closed convex set Y ⊂ X that
contains the ball of radius TA+ ε around x for some ε > 0. Let −B and B bound all
components of the first and second derivatives of f and the first derivatives of g on the
set Y . The analysis to follow is restricted to values of k such that x0, x1, . . . , xk ∈ Y .

From the sequence definitions, we have

xk+1(∆)− zk+1(∆) = f(xk(∆); ∆)− zk(∆)− g(zk(∆))∆.

Substituting for the first term on the right side using the first-degree Taylor polynomial
centered at (xk(∆), 0), and using the identity g(x) = f∆(x; 0) and that f(x, 0) = x, we
obtain

xk+1 − zk+1 = f(xk; 0) + f∆(xk; 0)∆ + E2(k,∆)− zk(∆)− g(zk)∆

= xk − zk + f∆(xk; 0)∆− g(zk)∆ + E2(k,∆)

= xk − zk +
[
g(xk)− g(zk)

]
∆ + E2(k,∆),

where the error term satisfies ‖E2(k,∆)‖ ≤ B∆2.
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Let G(x) denote the matrix of first partial derivatives of g evaluated at x, and let
H i(x) denote the Hessian matrix of gi. We can use the first-degree Taylor approxima-
tion for g, centered at zk(∆), to write

g(xk) = g(zk) +G(zk)(xk − zk) + Ẽ2(k,∆), (11)

where Ẽ2(k,∆) is a vector whose ith component is equal to (xk−zk)′H i(x̂i)(xk−zk)/2
for some x̂i between xk and zk. We thus have ‖Ẽ2(k,∆)‖ ≤ B‖xk − zk‖2. Using
Equation 11 to substitute for g(xk) in the expression for xk+1 − zk+1, we obtain

xk+1 − zk+1 = xk − zk +G(zk)
(
xk − zk

)
∆ + Ẽ2(k,∆)∆ + E2(k,∆).

Using the bounds on Ẽ2 and E2, and noting that ‖G(zk)
(
xk − zk

)
∆‖ ≤ B∆‖xk−zk‖,

we have
‖xk+1 − zk+1‖ ≤ ‖xk − zk‖+ 2B∆‖xk − zk‖+B∆2. (12)

Consider ∆ < 1. We next construct an upper bound on ‖xk − zk‖, denoted bk(∆),
for each k = 1, 2, . . . for which xk and zk remain in Y . Set b1(∆) = B∆, which is
clearly an upper bound on ‖x1 − z1‖ due to Inequality 12, that ∆ ≤ 1, and because
x0 = z0. By letting ∆ be small enough, the upper bounds b2(∆), b3(∆), . . . will be
constructed to ensure they are all weakly greater than B∆ and weakly less than 1. With
reference to the right side of Inequality 12, this means that bk(∆)+2B∆bk(∆)+B∆2 ≤
bk(∆)(1 + 3B∆). Inductively define b2(∆), b3(∆), . . . , b[T/∆](∆) by setting

bk+1(∆) = bk(∆)(1 + 3B∆). (13)

Clearly the sequence is increasing, so bk(∆) ≥ B∆ for each k. Recall that we have set
b1(∆) = B∆, and so we can use Equation 13 to explicitly solve for b[T/∆](∆):

b[T/∆](∆) = B∆(1 + 3B∆)[T/∆].

From the definition of the natural number e, the right side is less than B∆e3BT . For
∆ small enough, this number is below 1 and our presumptions hold to ensure that the
bounds are valid.

As ∆ → 0, the bounds are all smaller than b[T/∆](∆) and thus converge uniformly
to 0, and so {xk(∆)} and {zk(∆)} converge uniformly for each k = 1, 2, . . . for which xk

and zk remain in Y . The argument made at the end of the proof of the main theorem
applies here as well to establish that this is the case for all k ≤ [T/∆] provided ∆ is
small enough.
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