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Abstract

This note identifies sufficient conditions under which a partial construction of sequen-
tial equilibrium—characterizing beliefs and behavior for only a subset of the information
sets—is sufficient for the existence of a sequential equilibrium that coincides with the
partial construction in a suitable way.

1 Introduction
Various applications of noncooperative game theory call for the solution concept of sequential
equilibrium, requiring “full consistency” of beliefs across information sets, in contrast to ver-
sions of perfect Bayesian equilibrium that utilize weaker consistency notions. Constructing a
sequential equilibrium for a complex game can be challenging; the analyst must describe a se-
quence of fully mixed behavior strategies that determines the beliefs at all information sets and
that converges to the equilibrium strategy profile. This paper identifies sufficient conditions
under which a partial construction of sequential equilibrium—characterizing beliefs and be-
havior for only a subset of the information sets—is sufficient for the existence of a sequential
equilibrium that coincides with the partial construction in a suitable way.

For a simple warm-up example, consider the extensive-form game shown on the left side
of Figure 1, denotes as “First game.” Suppose we want to focus on information sets labelled
(in blue) h1, h2, and h3, and ignore behavior and beliefs at information sets h′2 and h′3. Let
J ≡ {h1, h2, h3} and write −J = {h′2, h′3}. By limiting attention to J , we can describe (i) the
strategy profile restricted to J and (ii) the players’ beliefs at the information sets in J about
the behavior at these same information sets.

Regarding the strategy, suppose that at h1 player 1 chooses action a, at h2 player 2 selects
action d, and at h3 player 3 mixes between r and t with equal probability. Let us express
this partial strategy profile as adr and adt each with probability 1/2, and note that it describes
behavior at only the information sets in J . The resulting path of play reaches the terminal
node following the action sequence (a, d), where the payoff vector is (3, 2, 1).

As for the beliefs, suppose that at h1 player 1 believes that players 2 and 3 would behave
as the partial strategy prescribes for h2 and h3. Likewise, at h2 player 2 believes that player 1
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Figure 1: Two examples.

has for sure chosen action a and that player 3 would behave as prescribed for h3 (choosing r
and t with equal probability). Finally, at h3 player 3 puts probability 1/2 on the combination
of actions ae chosen at h1 and h2, and puts probability 1/2 on the combination af. Note that
these are partial beliefs; they are only for the information sets in J and they address only the
behavior at the information sets in J .

Though we have not discussed information sets h′2 and h′3, the partial strategies are clearly
sequentially rational at h1, h2, and h3, given the partial beliefs we have described. At h1, action
a leads to the payoff 3 for player 1, whereas the expected payoffs of actions b and c cannot
exceed 2, regardless of the play at h′2 and h′3. For instance, if player 1 deviates to take action
b and player 2 happens to choose w, then player 1’s expected payoff is 2 because player 1
believes that player 3 randomizes between r and t with equal probability at h3. Likewise,
player 2’s action d is best at h2 given her belief that player 3 would randomize in this way.
Finally, player 3 is indifferent between r and t at h3 because her partial belief implies that the
path to h3 was (a, e) with probability 1/2 and (a, f) with probability 1/2.

Additionally, the partial beliefs are fully consistent in the following sense: There is a se-
quence of fully mixed partial behavior strategies that converges to the partial strategy specified
above (adr and adt each with probability 1/2) and has the property that, for each information
set in J , the sequence of distributions conditional on reaching this information set converges to
the partial belief specified above. Here “conditional on reaching this information set” means
conditioning on the subset of partial strategy profiles that would reach the information set
when combined with at least one strategy specification for −J . For instance, partial strat-
egy bdt reaches h3 because the path of play would reach h3 if player 2 were to select ac-
tion w at h′2 ∈ −J . The set of partial strategy profiles for players 1 and 2 that reach h3 is
{ae, af, bd, be, bf}.

A sequence that works is defined thus, for integer index k: At h1, the probabilities of
actions a, b, and c are, in order, 1 − 2(1/k)2, (1/k)2, and (1/k)2. At h2, the probabilities of
actions d, e, and f are, in order, 1 − 2(1/k), 1/k, and 1/k. And at h3, the probabilities of
actions r and t are each 1/2. As k → ∞, the conditional probabilities converge to the partial
beliefs described above. For instance, at h3 the condition distribution over {a, b, c}×{d, e, f}
puts the following probability on both ae and af:

(1− 2(1/k)2)(1/k)

2(1− 2(1/k)2)(1/k) + (1/k)2
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As k approaches∞, this number converges to 1/2.
Hence, in this example, it seems that we have the makings of a sequential equilibrium.

Indeed, there is a way to enrich the partial strategies, partial beliefs, and sequence of fully
mixed partial strategies to define a strategy profile for the entire game, beliefs at all information
sets, and a sequence of fully mixed behavior strategies that satisfy the conditions of sequential
equilibrium. Further, on the margin corresponding to J , the resulting strategy profile and
beliefs coincide with the partial strategy and beliefs that we specified above. In other words,
our partial sequential-equilibrium construction can be extended into a completely specified
sequential equilibrium.

For instance, supplementing the probabilities described in the previous paragraph, let the
probability of x at h′2 be 1 − (1/k), and let the probability of y at h′3 be 1 − (1/k). It is easy
to verify that the resulting sequence of fully mixed behavior strategies supports a sequential
equilibrium with the strategy profile in which player 1 plays strategy a, player 2 plays dx, and
player 3 plays ry and ty with equal probability.

The Theorem of this paper establishes conditions under which, for a given game and set
of information sets J , a partial equilibrium construction is guaranteed to extend to a fully
specified sequential equilibrium, meaning that we can ignore behavior and beliefs at the infor-
mation sets in−J . Two conditions must be satisfied. The first condition is obvious: Sequential
rationality at the information sets in J must be robust to any behavior at the information sets
in −J . The second condition is subtle and relates to the whether beliefs about actions taken
at information sets in J could be disrupted by the specification of behavior at the other infor-
mation sets. I call the second condition the rectangular margin-support condition, for reasons
that will become clear. The basic idea is that the information-set structure must allow for in-
dependent updating on dimensions J and−J with respect to a particular subset of the strategy
space that relates to the support of beliefs in the partial construction.

In the first example, the second condition relates to the following fact: Given the partial-
belief sequence specified for J , player 3’s belief at h3 must put probability 0 on path (b, w),
regardless of the probabilities put on the actions at h′2 and h′3. That is, the probabilities on
the actions at h′2 and h′3 turn out to be irrelevant for determining player 3’s belief about the
nodes in h3, because the probability of path (b, w) is bounded above by (1/k)2, whereas the
probabilities of paths (a, e) and (a, f) are both (1− 2(1/k)2)(1/k).

For a deeper illustration of the second condition of the Theorem, consider the game on
the right side of Figure 1 (Second game). Let J = {h1, h3}, meaning that we wish to ignore
information sets h2 and h′3, and suppose that our partial equilibrium construction is as follows:
The sequence of mixing probabilities for h1 and h3 is that action c is played with probability
1− (1/k)− (1/k)2, action a with probability (1/k), action b with probability (1/k)2, action d
with probability 1− (1/k), and action e with probability 1/k. In line with these probabilities,
we want player 3 at h3 to believe that action a was chosen for sure at h1. Then the partial
strategy in which player 1 chooses c and player 3 chooses d at h′3 is sequentially rational.

It would seem that we could not guarantee that player 3’s belief at h3 about player 1’s
action will hold up in a full construction of a sequential equilibrium. This is because, unlike
in the first example, the belief at h3 critically depends on the behavior at h2 ∈ −J specified
in conjunction with the behavior already described for J . For instance, if actions y and z are
both assigned probability (1/k)2 then, as k approaches ∞, player 3’s belief at h3 must put
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probability 0 on action a having been chosen at h1. That is, he thinks the path to h3 was (b, x),
which is contrary to what we wanted. This problem arises, in fact, for any probabilities that
we could pick for actions a and b.

It turns out, however, that for the second example one can still guarantee the existence of
a sequential equilibrium of the entire game that preserves the desired belief at h3, that is, that
player 1 chose action a earlier. Thus, we can safely ignore h2 in the partial construction, so
long as sequential rationality at the information sets in J holds regardless of the actions taken
at information sets h2 and h′3, which is the case.

In this example and for the general result, the construction is accomplished by imposing
a lower bound on the probabilities of actions at the information sets in −J that goes to zero
more slowly than does the bound on the actions at the information sets in J . We can then use
a standard existence result to find Nash equilibria in the space of bounded mixed strategies on
domain −J for each k. The key novel element of the proof is then to characterize the limit of
the conditional probabilities derived from the combination of mixed partial behavior strategies
on domains J and −J under the rectangular margin-support condition.1

To conduct the general analysis, it is essential to express beliefs as probability distributions
over the space of strategy profiles, which I call appraisals (Watson 2017). This is in contrast
to expressing beliefs as probability distributions over nodes at information sets (assessments,
Kreps and Wilson 1982) in conjunction with continuation strategies.2 The additional struc-
ture of appraisals is needed to separate belief components, such the marginal of actions at
any particular information set and correlation between actions taken at different information
sets. Expressing beliefs in this way is common for defining rationalizability, as in Pearce’s
(1984) original definition and Battigalli’s (1997) restatement, and has been utilized for equi-
librium analysis, such as Battigalli’s (1996) exploration of independence underlying equilib-
rium notions and Govindan and Wilson’s (2009) study of forward induction. I have refined
the approach by incorporating the player’s own strategy and paring down the notation to the
essentials.

The theory presented here was developed not for simple examples such as those shown
in Figure 1 (here to illustrate the theoretical components), but to help with more complex
applications. In fact, the Theorem is used to prove the main result in Watson (2023), which
examines a class of network contracting games, in which private messages are exchanged
between every pair of n players in each of 2n − 1 stages of time, so there is a huge number
of information sets and asymmetric information throughout. Hopefully the theory will give
at least one other theorist a useful tool to simplify the process of constructing a sequential
equilibrium in an applied setting.

The next section lays out notation and reviews definitions pertaining to the extensive-
form representation, beliefs, full consistency, and sequential equilibrium. Section 3 describes
what is required for a partial equilibrium construction. Section 4 contains the Theorem and
Section 5 presents a proof.

1For an illustration of where the rectangular margin-support condition fails, let J = {h1, h3} in the second
example and suppose that we seek a partial equilibrium construction in which at h3 player 3’s belief puts twice
the probability on action a as on action b selected at h1. Clearly there is no way of ensuring this belief without
nailing down player 2’s behavior at h2. A more interesting example appears later in this paper.

2Appraisals imply assessments, and the two approaches are equivalent for equilibrium definitions.
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2 Definitions

Extensive-form representation
Consider finite extensive-form games of perfect recall, with n players and nature taking the
role of “player 0.” Assume that the probability distribution of nature’s action choices is speci-
fied in the representation of the game and is common knowledge between the strategic players.
For a given such extensive-form game, let us use the following notation and terminology.

Let N ≡ {0, 1, . . . , n}, and let N+ ≡ N \{0} denote the set of strategic players. Let H
be the set of information sets, which I call situations. This set is partitioned into disjoint sets
H0, H1, . . . , Hn, where Hi denotes the set of situations for player i. Let H+ ≡ ∪i∈N+Hi be
the set of situations for the strategic players.

Denote by S the space of pure strategy profiles, including nature’s strategy. A strategy
profile can be expressed as a mapping s : H → A satisfying s(h) ∈ A(h) for every h ∈ H ,
where A is the action space and A(h) is the set of feasible actions at situation h ∈ H . The
strategy profile can equivalently be represented as a tuple s = (sh)h∈H , where for every h ∈ H ,
sh is the action chosen in situation h.

Let ∆S denote the space of probability distributions over S, that is, mixtures of strategy
profiles. For any subset T ⊂ S, let us take “∆T ” to mean the subset of ∆S with support in T .
Let u :S → Rn be the payoff function, extended to the space of mixed strategies by the usual
expected payoff calculation, assuming von Neumann-Morgenstern utility.

Strategy components and distributions
For any subset of situations L⊂H , let sL denote the restriction of s to the subdomain L. In
other words, sL gives the profile of actions that strategy s specifies for the situations in L. For
any L⊂H , define −L ≡ H \L. Note that we can then write s = (sL, s−L). For any X ⊂S,
define XL ≡ {sL | s ∈ X}.

In the case of L = {h} for a single h ∈ H , we simplify notation by dropping the brackets;
so, for instance, we write Xh and sh instead of X{h} and s{h}. Note that Sh is the set of actions
available at situation h. Also, for a given player i, the subscript “i” refers to the situations Hi.
For example, si means the same thing as sHi

. Likewise, “−i” refers to H−i. Thus, subscripts
“i” and “−i” have their usual meaning of identifying the strategies of player i and the other
players, including nature.

Definition 1: Given L ⊂ H and X ⊂ S, say thatX is an L-product set if X = XL ×X−L.

Note that, trivially, S is an h-product set for every h ∈ H . The next definition identifies
whether a mixture of strategy profiles treats a specific set of situations L ⊂ H independently
of the rest, meaning that it can be expressed as the product of the marginal distribution on L
and the marginal distribution on −L.

Definition 2: GivenL ⊂ H and any distribution σ ∈ ∆S, say thatσ exhibitsL-independence
if, for every L-product set X ⊂ S, we have σ(X) = σL(XL) · σ−L(X−L). Say that σ is a be-
havior strategy profile if it exhibits h-independence for every h ∈ H , and nature’s component
σ0 is as given in the representation.
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Assumption 1: Nature’s strategy σ0 is a behavior strategy with full support.

Next let us recall the definitions of conditional probability on strictly positive-probability
events and marginal distribution. We can constrain attention to finite state spaces.

Definition 3: Given a finite set W , a probability distribution π ∈ ∆W , and an event Z ⊂ W
for which π(Z) > 0, the distribution conditional on Z, denoted by p( · |Z), is defined by
p(X|Z) ≡ p(X ∩ Z)/p(Z) for every X ⊂ W .

Definition 4: Given a distribution p ∈ ∆S and a set L ⊂ H , the marginal distribution on
dimension L, denoted by pL, is defined by pL(XL) ≡ p(XL×S−L) for every XL ⊂ SL.

For expressing beliefs in equilibrium definitions, it is convenient to represent information
sets as subsets of strategy profiles. For each h ∈ H and s ∈ S, let us say that s reaches h if
the path of strategy profile s includes a node in h. Denote by S(h) the set of strategy profiles
that reach h. Note that, for any L ⊂ H , S(h)L is the set of action profiles for the situations in
L that are consistent with h being reached.3

Because of perfect recall, the situations for an individual player have a particular product
structure and precedence relation. For every pair of situations h, h′ ∈ Hi for a given player i,
it is the case that S(h) is a product set relative to h′. Further, for h, h′ ∈ Hi with h 6= h′, either
h is a successor of h′, in which case S(h) ⊂ S(h′); or h is a predecessor of h′, in which case
S(h′) ⊂ S(h); or neither, in which case S(h)∩ S(h′) = ∅. If h′ is a successor of h then every
path through h′ also passes through h.

Beliefs
It is convenient to express the players’ beliefs at their various situations as probability distribu-
tions over the strategy space, called appraisals (Watson 2019). To model belief updating, we
think of the players as having artificial situations that refer to “before the game begins.” To be
precise, for each player i ∈ N+, we define the initial situation hi to have S(hi) = S, and we
label these differently across players so as not to duplicate the situations in the game, H . For
each player i, let H i ≡ Hi ∪ {hi} denote the extended set of situations. Let H+ ≡ ∪i∈N+H i.

Definition 5: For any strategic player i and h ∈ H i, call a distribution ph ∈ ∆S an appraisal
at h if ph ∈ ∆S(h) and if ph exhibits independence relative to every h′ ∈ Hi. An appraisal
system is a collection of appraisals, one for each situation of the strategic players, written
P =

(
ph
)
h∈H+

.

Note that an appraisal contains two things: The marginal on Si gives player i’s own strat-
egy and the marginal on S−i gives player i’s belief about the strategy profile of the other

3Expressing extensive-form information sets as subsets of strategy profiles is not unusual, and it is something
I am trying to promote. Mailath, Samuelson, and Swinkels (1993) formulate solution concepts on the basis of
“normal form situations,” where there is no reference to an extensive form, and Shimoji and Watson (1998) take
such “restrictions” as given (whether or not they are derived from extensive-form situations). Note that, here, I
am taking the conventional approach of examining standard extensive-form information sets but simply represent
them as subsets of the strategy space.
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players. The condition ph ∈ ∆S(h) means that the appraisal at h puts probability one on
reaching h. The independence condition means that, at any situation h ∈ H+, player i views
his own strategy as independent of the other players’ strategy profile, and player i’s strategy is
represented as a behavior strategy.

Full consistency

Definition 6: Call a behavior strategy profile σ fully mixed if σ(s) > 0 for every s ∈ S.

A fully mixed behavior strategy reaches every situation with strictly positive probability.
Thus, for every h ∈ H we have σ(S(h)) > 0 and so the conditional probability formula
applies. Then for every X ⊂ S(h), the probability of X conditional on h is p(X|S(h)). Full
consistency requires that the players’ beliefs at every situation are derived in this way, using a
fully mixed strategy profile that is arbitrarily close to the strategy profile that the players are
supposed to be using in the game.

Definition 7: Take as given any finite set W , a subset Z ⊂ W , a sequence of probability
distributions {πk} ⊂ ∆W , and a distribution π ∈ ∆W . Say that {πk} inducesπ conditional
on Z if πk(Z) > 0 for every k and {πk( · |Z)} converges to π.

Definition 8: Say that an appraisal system P is fully consistent if there is a behavior strategy
σ and a sequence of fully mixed behavior strategies {σk} that converges to σ and induces ph

conditional on S(h), for every h ∈ H+.

Note that since S(hi) = S, this implies that phi = σ for every i ∈ N+. The next definition
means that, at the beginning of the game, the players’ appraisals coincide on a given strategy
profile.

Definition 9: Consider a behavior strategy profile σ. Say that an appraisal system P =(
ph

)
h∈H+

conforms to σ if, for every player i ∈ N+, phi = σ.

Sequential best response
Next consider the test of whether an appraisal at h specifies rational behavior for the player
on the move, meaning that the actions given positive probability at situation h maximize the
player’s expected payoff.

Definition 10: For a given situation h ∈ H+ and two appraisals ph and p̂h, say that p̂h is an
h-deviation from ph if ph−h = p̂h−h (they are identical on the other situations).

Definition 11: For a strategic player i and a situation h ∈ Hi, say that an appraisal ph

is rational at h if ui(ph) ≥ ui(p̂
h) for every h-deviation p̂h. Say that an appraisal system

P =
(
ph

)
h∈H+

is sequentially rational if ph is rational at h, for every h ∈ H+.
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Here sequential rationality is defined in terms of “one-shot deviations,” meaning that we
evaluate player i’s rationality at a given situation h ∈ Hi by looking just at alternative choices
at h rather than alternatives that would also adjust player i’s behavior at other situations that
may be reached in the continuation of the game.4 The familiar one-deviation principle—
equivalence between single-deviation optimality and strategy-deviation optimality—holds as-
suming that the appraisal system is “minimally consistent,” which is implied by the full con-
sistency assumption of sequential equilibrium, defined next.

Sequential Equilibrium
With the essential ingredients in place, here is the definition of sequential equilibrium (Kreps
and Wilson 1982), expressed using the terminology of appraisals:

Definition 12: Taking nature’s strategy σ0 as given, say that an appraisal system P is a
sequential equilibrium if there is a behavior strategy profile σ such that P conforms to σ, P
is fully consistent, and P is sequentially rational. In this case we say that behavior strategy
profile σ is a sequential-equilibrium strategy profile.

3 Partial Equilibrium Construction
Let us consider a partial equilibrium construction that focuses on a given set of situations
J ⊂ H assumed to contain nature’s situations H0. For each strategic player i, let J i ≡
(J ∩Hi) ∪ {hi}, and let J+ ≡ ∪i∈N+J i. Let φ denote a mixture over ∆SJ , in other words, a
strategy for only the situations in J . Call φ a J-behavior strategy if it exhibits h-independence
for every h ∈ J , and nature’s component σ0 is as given in the representation. Independence is
defined as before, applied here on the reduced domain of situations in J .

I next describe behavior, partial beliefs, and rationality at the situations in J . These defini-
tions are straightforward variants of those in the previous section. Let us begin with a partial
appraisal system, which gives the beliefs at each situation in J+ about the behavior at the
situations in J (and not at other situations).

Definition 13: For h ∈ J+, a distribution qh ∈ ∆SJ is called a J -appraisal at h if qh ∈
∆S(h)J and if qh exhibits independence relative to every h′ ∈ Hi ∩ J . A J -partial appraisal
system is given by Q =

(
qh
)
h∈J+

.

Definition 14: Call a J-behavior strategy fully mixed if φ(sJ) > 0 for every sJ ∈ SJ .

Definition 15: Say that J -partial appraisal system Q is J -fully consistent if there is a J-
behavior strategy φ and a sequence of fully mixed J-behavior strategies {φk} that converges
to φ and induces qh conditional on S(h)J , for every h ∈ J+.

4Note that since all strategy profiles in the support of ph and p̂h reach h, the expected payoffs shown in the
rationality definition are conditional on reaching situation h.
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Because the partial equilibrium construction will not address the behavior at situations
outside of J , the sequential-rationality condition for the analysis of situations in J requires
robustness to any behavior at the other situations.

Definition 16: For a strategic player i and a situation h ∈ Ji, say that J -appraisal qh is J -
rational at h if ui(ph) ≥ ui(p̂

h) for every appraisal ph at h satisfying phJ = qh and for every
h-deviation p̂h. Say that J -appraisal system Q is J -sequentially rational if qh is rational at
h, for every h ∈ J+.

Definition 17: For any J-behavior strategy φ, say that J -appraisal system Q conforms to φ
if, for every player i ∈ N+, qhi = φ.

The components above are next used to define partial sequential equilibrium.

Definition 18: Taking nature’s strategy σ0 as given, say that a J -appraisal system Q is a J -
partial sequential equilibrium if there is a J-behavior strategy profile φ such that Q conforms
to φ, Q is fully consistent, and Q is J-sequentially rational.

4 Theorem
The question to be addressed is whether any given J-partial sequential equilibrium can be
extended to construct a sequential equilibrium that coincides on J . Coincides means the fol-
lowing two properties: First, the actions specified for the situations in J are the same as in
the J-partial sequential equilibrium. Second, for each situation in J , the marginal belief on
dimension J is the same as the belief in the J-partial sequential equilibrium. That is, given J
and a J-sequential equilibrium Q, we would need to find a sequential equilibrium P such that
phJ = qh for every h ∈ J+.

The requirement of J-sequential rationality does not get in the way, because it is defined
to be robust to the behavior at the situations in −J . But there is no guarantee that a J-partial
sequential equilibrium can be extended, because generally the appraisals at situations in J
must depend on the distribution of actions taken at situations in −J , for whatever sequence
of fully mixed behavior strategies is needed for full consistency in the entire game. In other
words, for a given situation h ∈ J , ph depends on the probabilities that {σk} puts on actions
at situations in H\J .

The main creative step here is to find a condition on the J-partial appraisal system Q
guaranteeing that appraisals to be constructed for situations in J will effectively treat the
behavior in J as independent of the behavior in H \J , regardless of what is specified on the
latter dimension. Consider the following condition on the situations for a given set J ⊂ H
and any given J-partial appraisal system Q.

Rectangular margin-support condition: {s ∈ S(h) | sJ ∈ supp qh} is a J-product set, for
every h ∈ J+.

Note that {s ∈ S(h) | sJ ∈ supp qh} contains the strategy profiles that reach h and whose
J components are in the support of qh, the given belief at h regarding behavior in the partial
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equilibrium construction. A sufficient condition for {s ∈ S(h) | sJ ∈ supp qh} being a
J-product set is that (supp qh)×S(h)−J ⊂ S(h).

Figures 2 and 3 provide a graphical depiction of the rectangular margin-support condition
in the two examples discussed in the Introduction. In Figure 2, the table at the right represents
the possible combinations of action profiles taken at situations h1, h2, and h′2. These are
arranged in terms of dimensions J and−J that we set earlier, with the profiles of actions at h1
and h2 (the ones in J) as the rows and the actions at h′2 (the situation in −J) as columns. The
profiles shaded in blue are the combinations that reach h3. That is, at situation h3, player 3 has
observed that one of the shaded profiles has been played. Figure 3 has a similar table, giving
the information that player 3 has at h3 about the actions taken at h1 and h2.

Note that the shaded region in Figure 2 is not a product set; it is not the product of
{ae, af, bd, be, bf} and {w, z}. Even with a fully mixed and independent initial belief (as
would be the case in the perturbation along the sequence for a sequential equilibrium construc-
tion), player 3’s belief conditional on the set of profiles that reach h3 would not necessarily
exhibit independence, and the constructed behavior regarding −J would affect the updated
belief about J . But if the partial construction makes the conditional probability about J con-
verge to something with support in {ae, af}, as was the case discussed in the Introduction,
then this distribution is preserved as the marginal distribution in the full construction.

Likewise, the shaded region in Figure 3 is not a product set. However, if the partial con-
struction makes the conditional probability about J converge to probability 1 on {a}, as was
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true in the partial construction given in the Introduction, then this can be preserved as the
marginal distribution in the full construction, so long as we apply a suitable bound on action
probabilities in the full construction.

It turns out that such a construction is possible in general, assuming that the subset of
action profiles that reach the given situation, when restricted to the support of qh on the J
dimension, is a product set. This is the rectangular margin-support condition. The main result
follows.

Theorem: Take an given a finite extensive-form game, any set of situations J ⊂ H that
contains H0, and a J-appraisal system Q. If the rectangular margin-support condition is
satisfied andQ is a J-partial sequential equilibrium, then there exists a sequential equilibrium
P with the property that phJ = qh for every h ∈ J+.

For an example in which the rectangular margin-support condition fails and the Theo-
rem does not apply, consider the game shown in Figure 4. Let the situations of interest be
J = {h1, h2, h′2}. Define a sequence of fully mixed J-behavior strategies {φk} so that the
probabilities of actions a and b at h1 are both 1/k, the probabilities of actions d and e at h2
are both 1/k, and the probabilities of actions w and z at h′2 are both 1/2. It is clear that this
sequence supports the J-fully consistent appraisal system Q given as follows: qh1 puts prob-
ability 1/2 on both partial strategy profiles cfw and cfz; and both qh2 and qh′

2 put probability
1/4 on each of the partial strategy profiles afw, afz, bfw, and bfz. It is easy to confirm thatQ is
J-sequentially rational. Note that for the rationality test at h′2, the only appraisal ph′

2 satisfying
p
h′
2

J = qh
′
2 is that which has player 3 choosing x and y with equal probability at h3.

We have shown that Q is a J-partial sequential equilibrium. However, the rectangular
margin-support condition fails at h′2, as can be seen with a quick look at the table in Figure 4,
where the shaded cells are the combinations of actions at h1 and h3 that reach h′2. Because qh′

2

puts probability 1/4 on each of the partial strategy profiles afw, afz, bfw, and bfz, {s ∈ S(h′2) |
sJ ∈ supp qh

′
2} is not a J-product set. There is no sequential equilibrium P with the property

that phJ = qh for every h ∈ J+. In fact, the only sequential equilibrium strategy profiles are
aexz and bfxz.

a b

c

d

e f
3

2

1

h1

h2’

h3

h2

x

w
w

y

z
z

3, 3, 0

0, 2, 1

3, 4, 0
0, 0, 0 0, 0, 1

2, 1, 1

3, 0, 0

f e

d

x
y

3, 0, 0

0, 2, 0

3, 4, 1

2

3, 3, 0

a
b

yx

c

Figure 4: Third example.
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5 Proof
This section contains a proof of the Theorem, starting with two component lemmas. To avoid
confusion, note that throughout the analysis below,−J ≡ H\J (no initial situations included).

Lemma 1: Take as given a sequence of fully mixed behavior strategies {σk}, a set Z ⊂ S,
a distribution π ∈ ∆S, and a set Y ⊂ Z. If {σk} induces π conditional on Z, and if
supp π ⊂ Y , then {σk} induces π conditional on Y .

Proof. The claim is derived by the following equalities, which hold for any X ⊂ S:

π(X) = lim
k→∞

σk(X|Z) = lim
k→∞

σk(X ∩ Z)

σk(Z)
= lim

k→∞

σk(X ∩ Z)

σk(Y )
· σ

k(Y )

σk(Z)

= lim
k→∞

σk(X ∩ Z)

σk(Y )
· lim
k→∞

σk(Y )

σk(Z)
= lim

k→∞

σk(X ∩ Z)

σk(Y )
· lim
k→∞

σk(Y |Z) = lim
k→∞

σk(X ∩ Z)

σk(Y )
·π(Y )

= lim
k→∞

σk(X ∩ Z)

σk(Y )
= lim

k→∞

σk(X ∩ Y ) + σk(X ∩ Z\ Y )

σk(Y )

= lim
k→∞

σk(X ∩ Y )

σk(Y )
+ lim

k→∞

σk(X ∩ Z \Y )

σk(Y )
= lim

k→∞

σk(X ∩ Y )

σk(Y )
= lim

k→∞
σk(X|Y ).

The first line is from the definition of {σk} inducing π conditional on Z, the definition of
conditional probability, that Y ⊂ Z, and because σk(Y ) > 0 due to σk being fully mixed and
Y 6= ∅ (which is implied by supp π ⊂ Y ). The equalities on the second line hold because the
latter limit exists due to π(Y ) being well defined. The first equality of the third line follows
from π(Y ) = 1, since suppπ ⊂ Y . The equalities on the fourth line are from the definitions
of conditional probability and “induce,” and use the fact that σk(Y ) converges to 1 (due to
supp π ⊂ Y ). So we have limk→∞ σ

k(X|Y ) = π(X) for every X ⊂ S, and therefore {σk}
induces π conditional on Y .

Lemma 2: Take as given a sequence of fully mixed behavior strategies {σk}, a set J ⊂ H ,
a J-product set Y ⊂ S, and a distribution π ∈ ∆S. Let λk ≡ σk

J denote the marginal of σk

on dimension J and assume that λk(·|YJ) converges to some distribution ψ ∈ ∆SJ . If {σk}
induces π conditional on Y , then π exhibits J-independence and πJ = ψ.

Proof. For any J-product set X ⊂ S, the following equalities hold:

π(X) = lim
k→∞

σk(X|Y ) = lim
k→∞

σk(X ∩ Y )

σk(Y )
= lim

k→∞

σk
J(XJ ∩ YJ) · σk

−J(X−J ∩ Y−J)

σk
J(YJ) · σk

−J(Y−J)
.

The third equality is due to σk being a behavior strategy and X and Y being J-product sets,
implying that (X ∩ Y )J = XJ ∩ YJ and (X ∩ Y )−J = X−J ∩ Y−J . Because {σk(·|Y )} and
{λk(·|YJ)} converge, we have

lim
k→∞

σk
J(XJ ∩ YJ) · σk

−J(X−J ∩ Y−J)

σk
J(YJ) · σk

−J(Y−J)
= lim

k→∞

σk
J(XJ ∩ YJ)

σk
J(YJ)

· lim
k→∞

σk
−J(X−J ∩ Y−J)

σk
−J(Y−J)

= πJ(XJ ∩ YJ) · π−J(X−J ∩ Y−J) = πJ(XJ) · π−J(X−J).

12



The last equality is due to π(Y ) = 1, which follows from σk(Y |Y ) = 1 and the definition of
{σk} inducing π conditional on Y . That pJ = ψ is obvious by evaluating π(XJ×S−L).

To prove the Theorem, let J ⊂ H be a set of situations that contains H0 and let Q be a J-
partial sequential equilibrium such that the rectangular margin-support condition is satisfied.
Let φ be a J-behavior strategy and let {φk} be a sequence of fully mixed J-behavior strategies
that converges to φ and induces qh conditional on S(h)J , for every h ∈ J+. That Q conforms
to φ is an implication. For every h ∈ J+, define

Y h ≡ {s ∈ S(h) | sJ ∈ supp qh}.

We know that Y h is a J-product set from the rectangular margin-support condition.
Note that for every h ∈ J+, φk(Y h

J |S(h)J) converges to 1, since {φk} induces qh condi-
tional on S(h)J and Y h

J = supp qh. This implies that φk(S(h)J \Y h
J )/φk(Y h

J ) converges to 0.
We can presume that {φk} is defined so that φk(S(h)J \Y h

J )/φk(Y h
J ) ∈ (0, 1/|A|2) for every

positive integer k and every h ∈ J+, because this condition must hold for k large enough
anyway. (Recall that A is the action space of the game, and so |A| is the number of different
actions.) Further, define sequence {δk} by:

δk ≡ max
h∈J+

(
φk(S(h)J \Y h

J )

φk(Y h
J )

)1
2

.

We have that δk ∈ (0, 1/|A|)
Consider any positive integer k. Note that we can define an artificial game in the Bayesian

normal form as follows. Nature makes the choices at all situations in J , and nature’s strategy
is φk. This means that at each situation h ∈ J , nature takes the action according to distribution
φk
h, which is independent of the choices made at the other situations due to φk being a behavior

strategy. In the artificial game, strategic player i ∈ N+ makes the choices at situations inHi\J ,
and let us assume that this player is restricted to put probability of at least δk on each available
action. Standard arguments and use of Kakutani’s fixed-point theorem imply that the artificial
game has a Nash equilibrium in fully mixed behavior strategies, θk. Let σk ∈ ∆S be defined
by σk(s) ≡ φk(sJ) · θk(s−J). Note that σk is a fully mixed behavior strategy.

Because the game is finite and the space of feasible behavior strategies in artificial game
k converges to the space of behavior strategies in the given game, we can find a subsequence
{σkm} and a behavior strategy σ such that {σkm} converges to σ and {σkm(·|S(h))} con-
verges for every h ∈ H . Letting ph ≡ limm→∞ σ

km(·|S(h)) for every h ∈ H , we have thus
constructed an appraisal system P that is fully consistent and conforms to σ.

Because σkm is fully mixed, every situation is reached in the artificial game, implying
that θkm is rational at every h ∈ −J . By continuity of payoffs in the action probabilities
and because σkm converges to σ, it must be that ph is rational at every h ∈ −J . Regarding
situations in J , we need to establish rationality and that the appraisals at the J margin agree
with Q.

Take any h ∈ J . The rectangular margin-support condition implies that (S(h)\Y h)∩(Y h
J×

S−J) = ∅, which implies that

σk(S(h)\Y h) ≤ σk((S(h)J \Y h
J )×S−J) ≤ φk(S(h)J \Y h

J ).
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Likewise, we have σk(Y h) ≥ φk(Y h
J )·δk, because for every s ∈ Y h, it is the case that sJ ∈ Y h

J

and σk(s) = φk(sJ) · θk(s−J) ≥ φk(sJ) · δk. Combining these inequalities and recalling that
δk ≥ (φk(S(h)J \Y h

J )/φk(Y h
J ))1/2, we obtain

σk(S(h)\Y h)

σk(Y h)
≤ φk(S(h)J \Y h

J )

φk(Y h
J ) · δk

≤ φk(S(h)J \Y h
J )

φk(Y h
J )

·
(

φk(Y h
J )

φk(S(h)J \Y h
J )

)1
2

=

(
φk(S(h)J \Y h

J )

φk(Y h
J )

)1
2

.

The last expression on the right side converges to 0 as k →∞, because φk(S(h)J\Y h
J )/φk(Y h

J )
converges to 0. Therefore σk(S(h)\Y h)/σk(Y h) converges to 0. Recall that {σkm} induces
ph conditional on S(h), so that ph(Y h) = limm→∞ σ

km(Y h|S(h)). Using the definition of
conditional probability, this implies that supp ph ⊂ Y h.

Writing Z = S(h) and π = ph, Lemma 1 then implies that {σkm} induces ph conditional
on Y . Further, noting that φk is the marginal of σk on dimension J , and writing ψ = qh, we
can apply Lemma 2 to establish that ph exhibits J-independence and phJ = qh. This combined
with the fact that Q is J-sequentially rational implies that P is rational at every h ∈ J .

In summary, we have shown that P is fully consistent, P sequentially rational, and P
conforms to σ. Therefore P is a sequential equilibrium. Further, we have shown that phJ = qh

for every h ∈ J , completing the proof.
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