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Abstract

 Factor-biased technological change implies divergent productivity growth across

countries with different amounts of skill and capital per worker. I estimate the extent of factor

bias within industries and countries using a 19-country panel of manufacturing data covering the

1980s. Estimates using both production functions and total factor productivity functions show

that technological change is strongly biased against less-skilled workers and toward both skilled

workers and capital. An industry or country with twice the capital and skill per less-skilled worker

enjoys 1.4%-1.8% faster total factor productivity growth annually due to the effects of factor-

bias. These results are consistent with the empirical literature on skill-biased technological change.

They may well explain why “conditional convergence” of per capita income across countries is so

slow.
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1  Solow [1957] measures the extent of total factor productivity growth in the U.S. Eaton and
Kortum [1996,1999] offer evidence of international technology transfer using R&D and patent statistics.
Technology transfer models fall into two broad categories. The “appropriate” technology model
(Schumacher [1973]; Basu & Weil [1998] ) posits that new technologies are not absorbed immediately in
developing countries because of a lack of human or physical capital, differences in production technologies
in use, or differences in factor prices. In contrast, the conventional assumption in growth theory is of
pervasive technology in use everywhere. A weaker assumption is that technologies differ, but recent
innovations are so efficient that they are adopted across a wide range of industries, factor price
combinations and local technological capabilities. That concept is related to recent work on “General
Purpose Technologies” [Bresnahan and Trajchtenberg, 1995; Helpman 1998], such as electrification and
information technology  which increase productivity in a wide range of industries.
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1. INTRODUCTION

Why do some countries remain so much poorer than others? The two basic approaches to

income convergence yield quite hopeful conclusions. The factor accumulation approach [Solow

1956] explains that low productivity is the result of low ratios of skill and capital to labor. In the

presence of diminishing returns, countries with low skill and capital intensity have highly

productive skill and capital. That implies relatively rapid accumulation of capital and skill per

worker in poor countries, eventual convergence in factor intensities and thus convergence in labor

productivity. A second approach argues that low labor productivity is the result of using inferior

technologies.1 Replicating technology must be less costly than inventing new technologies, so

technology use should converge, leading to eventual convergence of total factor productivity. 

The evidence, on the other hand, is not hopeful at all. Growth rates of GDP/capita are not

generally higher in countries with low GDP/capita (at least since the early 1960s) [Barro 1991].

Most studies find convergence only after conditioning on available measures of international

differences in institutions and preferences that explain the slow accumulation of skill and capital in

poorer countries [Barro and Sala-I-Martin 1995, Mankiw, Romer and Weil1992]. Even then, this

“conditional convergence” is quite slow.

This paper suggests an alternative explanation for slow productivity convergence: Factor-

biased technological change. That mechanism has been quite successful in explaining increased

returns to schooling in the U.S. and the shift in labor demand away from less educated workers

and toward the more educated in the OECD.  Substantial evidence now exists demonstrating that

technological change has favored skilled (more educated) workers over less skilled (less educated)



2 For evidence of recent skill-biased technological change in the U.S. see: Bound and Johnson,
[1992]; Katz and Murphy, [1992]; Lawrence and Slaughter, [1993]; Berman, Bound, and Griliches,
[1994]. Historical evidence is offered by Goldin and Katz [1996, 1998], as far back as the beginning of the
century. Evidence from other OECD countries is available in Freeman [1988], Freeman and Katz [1994],
Katz and Revenga [1989], Katz, Loveman and Blanchflower [1995], Davis [1992], Berman, Bound and
Machin [1998].  Several studies have found increased relative wages of skilled labor in several developing
countries despite widespread trade liberalization in the 1980s which would predict the opposite through the
Stolper-Samuelson mechanism [Feliciano, 1995; Hanson and Harrison, 1995; Robbins, 1995; Berman,
Bound and Machin, 1998; Berman and Machin, 2000.].

3 That paper develops a theory of endogenous skill-bias in technological change. Their 
assumptions imply that the difference in measured TFP levels between developed and developing countries
will be greater for unskill-intensive industries than for the skill-intensive. Their estimates, which draw on
the same dataset as this paper does, find that pattern, but data limitations cannot allow them to tell if that is
evidence of skill-bias or of some change in preferences.
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workers at least for the past few decades in many other parts of the world.2 Table 1 provides a

sampling of that evidence, showing the declining wagebill shares of production workers in the

manufacturing industries of both high and middle income countries.

The connection between factor bias and slow productivity growth is intuitive. If

technology favors the skilled over the unskilled, then we would expect industries with more

skilled workers to have faster total factor productivity (TFP) growth rates [Klenow 1998; Kahn

and Lim 1998]. Similarly, it would not be surprising if countries with a high proportion of less-

skilled workers had slower growth rates of income per capita. That basic insight is not new. It

formed the motivation for previous work investigating skill-bias in developing countries [Berman

and Machin 2000] and is developed quite fully in the induced technological change model of

Acemoglu and Zilibotti [2000] to explain productivity differences across countries.3 The

contribution of this paper is in developing that argument in a very general setting and in estimating

the extent to which factor bias can slow productivity convergence.

This paper estimates the factor bias of technological change and applies the estimates to

the puzzle of slow productivity convergence. The data are a three dimensional panel of industries

over time for nineteen countries in the 1980s. Factor-bias parameters are estimated twice: in both

a production function and a TFP function. Both approaches yield consistent, strong evidence that

technological change favored both skilled labor and capital over unskilled labor. That conclusion

is robust to a number of alternative approaches and specifications. Factor bias estimates indicate
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that an industry or a country with twice the ratio of skills and capital to less-skilled labor enjoys a

1.4%-1.8% faster annual rate of TFP growth. 

The next section of this paper provides background about the lack of productivity

convergence in the world, in the sampled countries and in their manufacturing industries. Section

3 develops a production function framework for estimation. Section 4 describes the data, deals

with potential estimation problems, presents estimates and discusses their plausibility in the

context of a world with accelerated technology-transfer. The fifth section examines the

implications of estimated factor-bias for productivity convergence. Section 6 concludes.

2.  TFP GROWTH AND FACTOR ACCUMULATION IN MANUFACTURING

Figure 1 looks at the manufacturing sample in the context of global nonconvergence, to

check the representativeness of the data. The top panel, 1A, reproduces the standard finding that

income per capita growth rates between 1960 and 1990 are uncorrelated with income levels

[Barro 1991]. (Data are drawn from the Penn World Tables, version 5.6). The developing world

shows higher variance in growth rates, but the same mean. 

That international pattern of nonconvergence is quite stable. Figure 1B plots the same

relationship for 1980-90, revealing that the 1980s show the same pattern of nonconvergence, - a

triangle pointing right.

The sample of manufacturing data used in this paper is drawn from the nineteen countries

labeled in Figure 1B. They are a subsample of middle and high income countries used in previous

work, further selected on having usable measures of capital at the beginning and end of the 1980s.

Selection on data quality results in a disproportionate number of high income countries.

Nevertheless, the relationship in the sample between growth and levels of GDP/capita roughly

mimics the pattern in the larger sample: the cross-country variance of growth rates declines with

income and the average growth rate shows a slight reduction as income increases. National

growth rates are quite persistent. The correlation between the 1960-90 growth rate and the 1980-

90 growth rate is 0.88 (�=0.00) for these nineteen countries.
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Figure 1C plots growth rates in manufacturing value added/worker against levels of

GDP/capita for the nineteen country sample. This relationship shows the same triangle. Growth

rates do not decline with income and have higher variance at lower income levels.  Countries with

high growth rates in GDP/capita generally have high growth rates in manufacturing value added

per worker, though Portugal and Chile are exceptions. The correlation between the thirty year

GDP/capita growth rate and the value added per worker rate in the 1980s is 0.22 (�=0.38), but

rises to 0.42 (�=0.08) without Chile. Overall manufacturing value added per worker in this

sample mimics the pattern of nonconvergence in international GDP/capita. This is consistent with

the conventional view that successful NICS, such as Korea, have grown by rapidly expanding

manufacturing.

 Is it factor accumulation or TFP that is not converging in manufacturing? Within the

nineteen countries a careful decomposition of growth rates is possible into TFP growth on the one

hand and factor accumulation (skill and capital intensity) on the other. Assume a production

function Y = AF(L,S,K) using unskilled labor, skilled labor and capital respectively. Assume

constant returns and competitive markets to develop a standard definition of TFP growth: 

  ��TFP = ��y - ( 55l  ��l   +  55s  ��s  +  (1- 55l  - 55s ) ��k ), 

where lowercase letters are logarithms and 5’s are factor shares. Now let E (=  L + S ) denote

employment and develop the decomposition for the growth rate of value added per worker, 

��y-��e = 55l (��l-��e)  + 55s (��s -��e) + (1- 55l -55s )(��k -��e) + ��TFP 

     = “factor accumulation”+ ��TFP .

Figure 2 illustrates that decomposition, with the left figure plotting factor accumulation

against GDP/capita, and the right panel plotting TFP growth against GDP/capita. The left panel

makes it clear that little Solow convergence occurred in the form of capital or skill accumulation.

That pattern is analogous to the results of Mankiw, Romer and Weil (1992), who found

convergence only once they conditioned on accumulation rates. 

The right panel clearly illustrates that most of the variance in the growth of manufacturing

value added per worker (86%) is in TFP growth.  It is worth stressing that since TFP growth

rates are calculated as a residual, improved measurement might reallocate growth from TFP to



4 Young [1995] addresses a debate as to whether the rapid growth of several East Asian economies
is due to TFP growth or to factor accumulation. One of the messages of this paper is that the dichotomy is
false, since factor bias translates current factor accumulation into future TFP growth.
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factor accumulation. That was the case in the study by Griliches and Jorgenson [1967] of U.S.

TFP growth, and in Young’s [1995] study of TFP growth Hong Kong, Singapore, South Korea

and Taiwan.4 On the other hand, these measured TFP growth rates for manufacturing are not

simply measurement error. The correlation between the 1960-1990 GDP/capita growth rate and

the manufacturing TFP growth rate in the 1980s is 0.17 (�=0.50), but rises to 0.42 (�=0.095)

without Chile. That correlation is remarkably tight, considering the difference in data sources and

fact that the two growth rates have only ten of thirty years in common. It is safe to conclude that

a large component of growth in manufacturing output per worker is TFP growth. Furthermore,

factor accumulation would have to be understated by an order of magnitude, and

disproportionately so in the low income economies, for the basic picture in Figures 2A and 2B to

be reversed.

Manufacturing TFP growth is not contributing to convergence either: it shows the same

triangular pattern that observed in Figure 1 for manufacturing value added per worker and for

GDP per capita. 

To sum up, the manufacturing data reproduce the pattern of nonconvergence evident in

GDP per capita. They reveal that most of the nonconvergence is in TFP growth rates. So if

replication is less costly than invention, why is TFP growth not contributing to convergence in

value added per worker? We need a theory of TFP divergence.



5 If inputs are to be forever useful in production and subject to diminishing marginal returns, then
the standard restriction 0< �f(t) < 1 must also be imposed for all factors f and time t.
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3.  FACTOR-BIASED TECHNOLOGICAL CHANGE IN PRODUCTION : 

A FRAMEWORK FOR ESTIMATION

This section develops a framework to explain how factor-biased technological change can

yield divergent TFP growth rates. That framework also generates estimating equations, allowing 

the data to report the magnitude of TFP divergence due to factor bias. 

A Cobb-Douglas production function with exponents that change over time allows the

possibility of factor-biased technological change, 

.

Here Y is product, K capital, S skilled labor and L unskilled labor. Time is indexed by t. 

The logarithmic form is convenient for discussing factor bias. Rewritten using lowercase

letters to indicate logarithms, the production function is

. 

Output elasticities of factors are given by

                     . 

The rate at which �f (t) changes bias of technological change towards factor f ,

. 

Constant returns to scale require that the exponents sum to one. A weaker assumption that proves

to be useful is that returns to scale (constant or otherwise) remain unchanged by technological

progress, or that the three �U�Uf  terms sum to zero. Call that assumption “unchanging returns to

scale” (URS). I will discuss its implications below.5 

A working definition of relative factor-bias helps to link this framework to the literature.

(3) Technological change is relatively skill biased  if  .



6 For example,  Bound and Johnson [1992] or Katz and Murphy [1992].
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In words, relative skill bias exists if the output elasticity of skilled labor increases at a faster rate

than that of unskilled labor. To justify that usage, consider the implications of relative skill-bias.

Assuming perfectly competitive labor markets, (3) implies that, holding relative wages constant,

the relative demand for skilled workers increases with time, since

            , 

 ,    so that  

Conversely, holding the ratio of inputs fixed inputs fixed, relative skill-bias implies that the relative

wage of skilled workers increases. For this production function, it also implies that the wagebill

share of skilled workers increases. These three implications have been treated as alternative

symptoms of skill-biased technological change in the literature.6

This framework allows estimation of the absolute (as opposed to the relative) bias of

technological change.

Define technological change as  

absolutely  f - biased    if   �U�Uf   >  0 ,  and  

(4) absolutely  f - saving    if   �U�Uf   <  0 ,  

for f �� ( l, s, k ).

That is, technological change is absolutely f-biased if the marginal product of factor f increases

(beyond the neutral increase, '), holding inputs constant. 

In the two factor model with unchanging returns to scale  �Us = -�Ul , so absolute and

relative skill bias are equivalent, and skill-biased technological change is equivalent to labor-saving

technological change.

The three factor model, even with unchanging returns to scale, is more flexible. For

instance, technology could be absolutely biased against both s and l, but relatively biased toward

s.  Assuming unchanging returns, absolute skill-bias and absolute capital-bias imply absolute

labor-saving technological change, since �Ul  =  - �Uk  - �Us  .
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Factor Bias and Productivity Growth

To study the effect of factor bias on productivity change, note that the �U terms also

reflect the effect of factor quantities on changes in total factor productivity. To see this, note that 

Here the partial derivative of y with respect to time is a change in total factor productivity, since

inputs are held constant. The cross partial of product with respect to time and input f is the factor-

bias term. For example, if technological change is absolutely skill biased, then TFP growth must

be faster, the greater the level of skilled labor in production. That property is not particular to the

Cobb-Douglas form. It follows from the symmetry of cross-partial derivatives in any production

function. Equation (5) indicates one way of estimating factor bias terms, by regressing the TFP

growth rate on the levels of inputs.

Figure 3 illustrates a relatively skill-biased technological change as the shift of an isoquant

in S, L space, holding K constant. For a country or an industry at point B, with the S/L ratio given

by the slope of the vector OB, the productivity gain is given by length of the segment BC --the

decrease in inputs required to produce a unit of output. That technological change is relatively

skill-biased since, at the relative wage illustrated by the slope of the line tangent to the isoquant at

B, the new isoquant requires a higher S/L ratio (at point D).  In contrast, a country or industry

with the lower S/L ratio given by the vector OA experiences no productivity gain. The size of the

differential productivity gain between A and B is given by the factor bias coefficients (the �U),

which are estimated below.

Assuming unchanging returns to scale, �Ul has the following convenient interpretation: If

one industry has twice the K/L ratio and twice the S/L ratio as another,  the TFP growth rate of

the former will be -�Ul faster. Anticipating the results, �Ul will be negative, so the former will grow

faster.

The unchanging returns assumption is not critical for what follows. It is convenient

though, and allows for more precise estimates. Is it a reasonable assumption? The data will insist

that the factor bias terms (the �Uf) sum to a negative number, implying that returns to scale decline

over time. Yet there is a replication argument that returns to scale should remain unchanging.



7 This restriction should be thought of as a short term approximation. The linear functional form
implies that if �f  is nonzero, factor f will eventually have an output elasticity outside the [0,1] interval. 

8 For example, the measured proportion of skilled workers in Japanese manufacturing jumped from
46 to 53 percent between the 1975 and 1978 surveys when the minimum firm size which got the “long
form” with the skilled worker question changed.
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Without URS, scale would affect the TFP growth rate of an industry (see equation (5)). If

declining returns were true at the firm level, large firms could split into smaller pieces to increase

productivity. If declining returns were true at the industry level, large industries could send

production abroad to increase productivity. Either way, in equilibrium we should not observe

declining returns to scale. The plausibility of URS will come up again in interpreting estimates,

though the thrust of the evidence for factor bias will not require this assumption.

Measurement Issues and Estimating Equations

Estimation requires a functional form for �(t). Impose the restriction7

��f(t)  = ��f + ��f t  ,   so that   �U�Uf = ��f .

Substituting that restriction into (2) yields one way of estimating factor-bias terms. Equation (5)

provides a second method. The data available to estimate the parameters of the production

function (equation (1)) are a three-dimensional panel of manufacturing industries within countries

observed twice, at the beginning and end of the 1980s. 

Measurement issues complicate estimation for two reasons. First, inputs are measured

inconsistently. The definitions of skilled and unskilled labor are likely to differ conceptually across

countries. For instance, middle income countries are more likely to undersample small firms,

which tend to have lower proportions of skilled workers, leading them to overestimate the

proportion of skilled workers.8 The quality of all three inputs may also differ across industries.

More generally, we know from the work of Griliches and Jorgenson [1967], that mismeasurement

of input quality can lead to substantial mistakes in TFP accounting. Assume that capital, skilled

labor and unskilled labor are measured with a country-specific error of proportionality. In

logarithms, the measured quantity is then the sum of the true quantity and a country-factor

specific error,  
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(6) fm
ict = fict + uf

c    for  f �� ( k, s, l) . 

Besides inconsistent measurement of factor qualities, a second source of likely

measurement error is in price comparisons across countries and industries. National price  indexes

(from the Penn World Tables) are not completely corrected for quality, which is likely to differ

disproportionately across industries because of market power, particularly for nontraded goods.

These fixed industry-country specific price differences are absorbed by an industry-country

specific level effect,  �ic , which also absorbs fixed productivity differences,  measurement error in

output and any industry-country specific measurement error in quantities. These measurement

errors may be substantial considering that the data are collected from disparate sources without

the intention of making them comparable. I also include a country-period specific productivity

level 
ct , and an industry specific productivity trend in output growth 'i .  With these additions,

substituting (6) into (2) yields 

Differencing (7) over time removes the time-invariant measurement error from  �

coefficients but not from � coefficients. Labeling the periods  t=0  and  t=1  and defining 

�xict =   xic1  - xic0, (for a generic variable x)

Under these assumptions the elasticity coefficients � and the factor-bias coefficients � are

identified despite the measurement error. The estimated country effect includes all the bracketed

terms: the country-specific change in productivity �
c and terms involving country-specific

measurement error in factors. There is a symmetric argument for industry-factor specific

measurement error,  ui 
f , which can be accommodated in the same way, compromising
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identification of industry specific changes in productivity, 'i , but not affecting identification of the

elasticities and factor bias terms.

One final measurement problem is that physical units of value added are not actually

observed. I can measure PY (sales net of intermediate inputs), or p + y in logarithms. This is a

familiar problem in production function estimation whenever the price deflator is suspect, but the

ability to estimate industry effects adds a novel element to the solution. Consider the reduced

form regression of �p  on �y (which cannot be run for lack of data),

(9) ��pic = ai  +  bc + m ��yic + vic .

Here ai  and  bc are industry and country fixed effects in price changes. The coefficient m cannot

be signed. Using a textbook simultaneity bias calculation, it is an average of the (inverse) demand

and supply elasticities of industry output, weighted by the variances of demand and supply shifts.

Since those variances are conditional on common industry effects across countries, they can be

interpreted as local supply and demand shifts. For instance,  m will be positive if the variance of

local demand shifts exceeds that of local supply shifts and the price elasticity of demand exceeds

that of supply (in absolute value). Conditional on industry effects, m would be quite small if trade

makes product demand quite elastic. In the estimates reported below, m will in fact be quite small. 

Adding �p to both sides of (8) and substituting for �p on the right hand side from (9)

yields

Thus, unmeasured price changes introduces an ambiguity. The coefficients of (8) are identified

only up to a proportion (1+m): (1+m) �f , (1+m)�f  for factors f � (l,s,k).  The extent of that

distortion (1+ m)  can be estimated if constant returns are assumed. Then the sum of estimated �



9 This approach is similar to that taken by Kahn and Lim [1998] in their study of skill-augmenting
technological change in the U.S. In their estimating equation the shares appear as covariates and they are
forced to impose an adding up constraint on these, similar to URS.
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coefficients is,  . Note that industry and country effects in price changes

from (9) will also be loaded onto the estimated industry and country effects.

TFP Specification

An alternative approach to estimating the factor-bias terms is to use the relationship in (5),

regressing dTFP on input levels.9 This approach requires making standard assumptions in order to

calculate factor weights in TFP - constant returns and competitive markets. On the other hand, it

allows much more flexibility in the production function. The time invariant part is not restricted to

have a Cobb-Douglas form, to have a constant elasticity of substitution between factors or to

have common parameters in different industries and countries.

Assuming constant returns to scale and competitive markets, the value-added shares of

each factor, 5, provide factor weights in calculating the rate of  TFP change, 

The factor-bias portion of the remainder of the equation is specified as in (8), allowing separate

trends of biased technological change for each factor. Factor bias coefficients are identified up to

a multiplicative constant (1+m), as in (10). Similarly, estimated country and industry effects in

productivity change capture country and industry-specific price changes as well as country and

industry-specific measurement error in factors (though the equation only illustrates this point for

the country effect).

The following section estimates factor bias terms  using both Cobb-Douglas and TFP

specifications. 



10 The main purpose of these data is to facilitate international comparisons relating to the
manufacturing sector. Concepts and definitions are drawn from the International Recommendations for
Industrial Statistics [Statistical Papers, Series M, No 48/Rev 1, United Nations Publication] and the
classification by industry is taken from the International Standard Industrial Classification (ISIC) of All
Economic Activities [Statistical Papers, Series M, No 4/Rev 2, United Nations]. For details see the Data
Appendix in Berman, Bound and Machin [1998].
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4.  RESULTS

A rich three-dimensional panel of industries across countries over time is available to

estimate the factor bias terms. Since it covers countries with industries at different levels of

development, it contains unusually rich variation over time, industries and countries. This section

describes the data, discusses potential biases in estimation and presents results. 

Data

To investigate factor bias this paper uses the United Nations General Industrial Statistics

Database [United Nations 1992] (later administered by UNIDO). It includes manufacturing

employment, wagebill, investment and output data for many countries. This rich data set reflects

the unique capability of the United Nations to compile data by soliciting contributions from the

statistical agencies of member countries.10 It covers 28 manufacturing industries at (broadly) the

two to three-digit level, consistently defined across countries and years using the ISIC

classification. Countries were selected that provide data of consistent quality over time. 

Table 2 reports descriptive statistics for the nineteen countries used. They are ranked by

income, (all figures reported in constant 1985 dollars, using the GDP deflators and 1985 exchange

rates from the Penn World Tables [Summers and Heston, 1991]. Following a classification used in

previous work [Berman and Machin, 2000], countries are arranged into two income groups: a

high income group with GDP per capita exceeding $10,000 (1985 US$) in 1980; and a middle

income group with GDP per capita between $2,000 and $10,000 in 1980.

The ten middle income countries are from Asia, Europe and South America. This group

includes several countries with large manufacturing sectors: (the former) Czechoslovakia, Korea,

and Spain. The high income group includes nine countries ranging in income from Japan to the

U.S. The choice of 1985 exchange rates favors the U.S., but note that U.S. value added per



11 The term “skill” in skill-bias is an unfortunately vague expression we inherit from the literature.
In our discussion “skill”can be interpreted as education.

12 75 percent of nonproduction workers are in white collar occupations, while 81 percent of
production workers are in blue collar occupations. 76 percent of nonproduction workers have at least some
college education, while 61% of production workers have a high school education or less.
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worker is twice as high in 1980 as that of West Germany, the second-ranked country in this

group. The U.S. is also the largest manufacturing employer, with 19m workers, followed by Japan

with 10.5m, the UK with 6.5m and West Germany with 6.3m. 

Our measure of skill in these data is the classification into nonproduction and production

workers (operatives and nonoperatives in UN terminology). The term production worker usually

refers to employees directly engaged in production or related activities of the establishment. That

includes clerks or working supervisors whose function is to record or expedite any step in the

production process. Employees of a similar type engaged in activities ancillary to the main activity

of the establishment and those engaged in truck driving, repair and maintenance and so on, are

also considered to be production workers. 

This is far from the ideal measure of “skill,” which would include elements of education

and training.11 Clearly the educational level of each of these categories of worker differs across

countries. Two sources of evidence indicate that nonproduction workers have higher educational

attainment than production workers: 1) cross-tabulations of matched worker and employer

surveys at the plant in the U.S. in 1990 reveal a fairly tight relationship between years of

schooling, occupation and nonproduction categories12 [Berman, Bound and Machin, 1997]. An

analogous effort at the industry level in the UK reveals a similar mapping [Machin, Ryan and Van

Reenen, 1996]. Harris [1999] reports the results of a similar exercise at the plant level, which also

reveal that nonproduction workers have a higher educational level;  

2) Nonproduction workers are uniformly better paid. Quality indices based on a comparison of

CPS and ASM data in the U.S. suggest that about ½ of skill upgrading in U.S. manufacturing

took place within nonproduction and production categories over the 1980s [Berman, Bound and

Griliches, 1994]. We conclude that while the aggregation problems are worse than usual for these

categories, within country comparisons are probably reasonable measures over periods as long as
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a decade, while between country comparisons, especially across income ranges, should be viewed

with caution.

Capital stock is calculated by summing and discounting lagged investment. These are

discounted using the Penn World Tables investment price index. Discount factors and coefficients

on lagged investment are fitted from the Gray-Bartelsman [1995] data on U.S. manufacturing,

which reports both investment and capital stock. For details see Berman and Machin [2000].

Table 3 provides descriptive statistics for estimating equations. Total factor productivity

growth is only slightly higher in our sample among middle income countries than among the

developed countries. (The calculation of TFP growth is described in the next subsection.) The

standard deviation is almost three times as high among middle income countries, reproducing the

pattern in Figure 2 of selective convergence. Note also that manufacturing industries in high

income countries have a much faster absolute decline in production worker employment.

Potential Pitfalls in Estimation

Estimation of (10) and (11) is complicated by several potential sources of bias familiar

from the literature on the estimation of production functions [Griliches and Mairesse, 1995].

Before we get distracted by the estimates and the economics, let’s turn to the dirty work of

discussing potential biases and how they are treated.

First, measurement error is likely in the levels of factors, which is both transitory and

industry-country specific, so that industry and country effects will not absorb it. This could be

anything from fluctuations in unmeasured quality, to price changes in capital to coding error.

One implication of transitory measurement error is that it appears on both sides of

equation (11), creating the potential for spurious correlation between factor levels and �TFP. To

illustrate, let ft  be a vector of measured factors in period t. Now

ft  =  ft
*  +  ut  , 

where ft
* is the true level and ut is classical measurement error, uncorrelated with f or y. The

change in TFP would then be calculated as

�TFP  =  �y - 5` �f  =   �y - 5` �f* - 5`(ut - ut-1) = �TFP* - 5`(ut - ut-1) . 
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That measurement error would create a spurious negative correlation with ft and a spurious

positive correlation with ft-1 . 

A convenient solution is to use the average level of factors over time as a regressor

(consistent with the approximation of the derivative with respect to time in equation (11)). 

Let f = (ft + ft-1) /2 = f* + (ut + ut-1) /2 . Let *t denote the variance of ut . The spurious covariance 

5`Cov(ut - ut-1, ut - ut-1)5/2  =  5`( *t  - *t-1)5/2 , which will be zero if the variance of the

measurement error is unchanged over time. 

A related problem arises with the shares 5f = wfF/Y (where wfF is the wagebill of factor f,

and capital’s share is calculated as a residual). These include the level of factor F on the left-hand

side of (11).  So transitory measurement error appears in levels on the left-hand side and in

logarithm on the right-hand side, inducing a spurious correlation. That spurious correlation is

prevented by predicting 5ic using a regression of shares on industry and country indicators and

using the predicted values to calculate TFP. These predicted values are then purged of industry-

country specific measurement error.

A second, more standard, implication of measurement error in factors of production is that

bias due to measurement error is exacerbated by differencing, because of the reduction in the

signal to noise ratio (the ratio of the true variance to the variance of the measurement error). So

we expect the estimated elasticities (the �’s) in equation (10) to be biased downward.  This is a

common problem in estimating production functions in differences. The estimated capital

coefficient in firm data is often near zero [Griliches and Mairesse 1995].

The potentially biased � estimates are for the most part incidental, but they could transmit

bias to the estimated � terms through the covariance of estimated coefficients. To see this,

consider the least squares regression estimating vectors � and �, where X1 = �f, and X2 = f,

assuming that �f is correlated with the error term, but f is not. The least squares estimator is then



13 Strictly speaking, that instrument will be invalid in the production function specification, since
Cov(ut-1, [ut + ut-1] /2)  > 0, where ut is the measurement error in measuring the factors ft . Nevertheless, the
induced bias is probably no worse than the standard least squares attenuation bias (which involves the
covariance of  (ut + ut-1) /2 with itself, but also a larger denominator) and would likely tend only to bias
estimates towards zero.
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Aggregation to the industry level helps in this respect, as measurement error between

firms tends to cancel, raising the ratio of signal to noise. The developing country data also seem to

be rich in signal, as we shall see below. Defining f as an average over time also helps. It reduces

the spurious negative covariance of �f with f due to measurement error, thus reducing the

spurious covariance between estimated � and � coefficients. A third treatment is to use prior

beliefs about the values of �’s to bound the possible bias on �. This last idea can be best

explained by demonstration.

A third potential source of bias is an endogenous response of factor use �f, to an

industry-country specific change in productivity or prices. That would induce a positive

covariance with the error term, Cov(�f , ��) > 0 , and a generally upward bias in the estimated �

in equation (10). As before, experimenting with restrictions on the estimated � can help gauge

how much bias is transmitted to the estimated � .

A related concern is that endogenous response will induce a positive correlation between

the measured level of  f  and the error term, Cov(f , ��) > 0,  since  ft appears in f. That problem

can be treated in the production function specification by using lagged inputs ft-1  as instruments,

since they are determined before ��t is observed.13 Thus, identification of the � terms in equation

(10) comes from cross-industry variation in the lagged levels of inputs (s, l, k) which could arise

from any number of historical, industry-country specific, demand or supply conditions in labor,

capital, or product markets.

This endogeneity bias is more serious in the TFP specification, since lagged values of

inputs are not valid instruments. There, in the presence of transitory measurement error, the error

term will include  - 5`(ut - ut-1). Thus, instrumenting with the variable ft-1, which includes the

lagged measurement error ut-1, will tend to bias the estimated � away from zero (in addition to

any bias due to classical measurement error, probably toward zero.)
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In summary, identifying the factor-bias terms in the production function specification

appears to be feasible, as the major sources of potential bias can be controlled. However, in the

TFP specification, there is a potential endogeneity bias. In practice, comparing the results of the

two approaches will turn out to be informative.

Results

Table 4 reports the result of estimating the translog specification in equation (10). The

first three rows report the factor bias coefficients (�) on log levels of inputs, while the next three

report the elasticities (�) on changes in logarithms. As noted in the last section, bias in the

estimated � might be transmitted to the estimated �. Looking first at the � coefficients in the

leftmost row, note that they are large, with an estimated �k of .774 and returns to scale of 1.39.

This is not an unusual result in cross-country regressions with developing countries. It may be due

to endogenous adjustment of inputs, especially capital, to price and productivity shocks. It may

also be due to a positive correlation of prices and quantities of product, reflected in a positive  m

coefficient in (9).  Those excessive returns to scale recede when we include country effects. The

estimated �k declines to a more reasonable 0.448.  That change indicates that the high coefficient

on �k in the leftmost column of results may have been due to country-specific, cyclical increases

in measured productivity. The �’s sum to 1.09. Thus, if constant returns hold, the bias due to not

measuring prices (m in equation (10)) is rather small - estimated coefficients are about 9% too

high in absolute value. The reasonable size of the estimated �’s from the “country effects” column

on also provides some reassurance about bias in the estimated � that may be transmitted to the

estimated � coefficients.

The third column adds industry effects in productivity growth, as specified in equation

(10). That does not much change the estimated �’s. Under constant returns, m is estimated at 8%.

The addition of industry effects corrects a positive omitted variable bias on the estimate of �l in

the previous column, changing it from -1.24% to -2.15%. Conditional on country effects,

industries with high production worker employment tended to have high measured TFP growth,



14 In the analysis that follows that sector bias will be allowed to differ by income group.
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implying a sector bias [Haskell and Slaughter 1998]  toward unskilled workers14 (or at least

industry-specific time-invariant measurement error in inputs).

Before turning to robustness checks, consider the economic interpretation of the factor-

bias coefficients. The estimated coefficient on production workers, �l , is -2.15%. Subtracting

0.16 due to m , this implies that annual productivity growth is almost 2% slower in industries with

twice as many production workers. The estimated standard error is (0.51), indicating strong

evidence of absolute labor saving technological change. 

The estimated coefficient on skilled labor, �s, is positive, at 0.69, but not statistically

significant, providing weak evidence of absolute skill bias. Evidence for relative skill-bias is

strong, as the estimated value of �s - �l is 2.41% (s.e.=1.05%) (not shown in the Table).  The

estimated coefficient on capital, �k is 0.87% (0.41%), providing strong evidence of absolute

capital bias in technological change.

The second to last row reports the change in returns to scale �s + �k + �l , which would be

zero under unchanging returns to scale (URS). The estimated sum is -0.59%, indicating that

increased productivity of skilled labor and capital does not fully compensate for declining

productivity of unskilled labor. (This does not imply a productivity decline, since the equation

allows Hicks-neutral productivity change.) Changing returns to scale are an uncomfortable

finding. They conflict with the replication argument offered in the previous section, since they

imply that industries of different sizes have systematically different TFP growth rates. (In this case

smaller industries have higher growth rates.) Those objections, and the clear interpretation that

URS allows, argue for exploring what happens if URS is imposed. I will return to discuss the cost

of the URS assumption in the next section.

To put these results in context (ignore the data’s objections and) impose URS. That raises

the estimated skill and capital bias coefficients, yielding an  implied �l estimate of -1.80% (which

is less negative than the unrestricted estimate), or -1.67% corrected for m. In other words,

conditional on industry and country effects, an industry with twice the capital/unskilled labor ratio

and twice the skilled/unskilled labor ratio has an annual TFP growth advantage of  1.67% ! 
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Are these results driven by some outlier, rogue industry or misbehaving country? Figure 4

illustrates a leverage plot of the estimated �l . It graphs the growth rate of value added against the

log of production employment, once both have been conditioned on all the other covariates (in the

linear regression sense). The Frisch-Waugh theorem implies that this slope is the same as that in

the weighted, multivariate regression. The upper left panel is a simple scatterplot. The upper right

panel is drawn with circles proportional to the weights used in the regression (value-added shares

within country).  The lower two panels are labeled by country and industry. Combined, the four

panels make it clear that estimated labor-saving technological change is not driven by outliers. As

a separate robustness check the regression was run dropping a single country each time. That had

no substantial effect on the factor bias coefficients.

What about other potential pitfalls? Table 5 examines these. One potential source of bias is

the endogenous reaction of factors (l, s, k)  to industry-country specific productivity or price

changes, which would appear in the residual, ��. Since factors are measured at their average

level between the beginning and end of the period, this may bias estimated coefficients, probably

towards one. Using lagged levels (lt-1 , st-1 , kt-1 ) as instrumental variables can treat that problem,

since these are determined before a productivity or price shock. The column labeled “lagged levels

as instruments” reports those instrumental variable estimates. These are essentially identical to the

least squares estimates in the previous table. A Hausman test reveals that we cannot reject the

hypothesis of identical coefficients: endogenous reaction of factors to productivity or price shocks

is not a source of discernible bias.

Another potential source of bias discussed above is a bias transmitted from the �

coefficients to the � coefficients. (The � coefficients are estimated without an instrument in all

specifications so they are vulnerable to bias due to endogenous response to productivity or price

shocks, for instance.) Regardless of the source of potential bias, the most suspicious estimated �

coefficient is that on log change in nonproduction workers. At 0.49, it is much higher than the

nonproduction wagebill share in value added. One way to approach the potential transmitted bias

is to force that coefficient to take a lower value and observe the change in � estimates, (as

suggested by the bias formula in the subsection above). A possible restriction would be constant

returns to scale, which are imposed in the next column to the right. That exercise has little effect
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on the �’s so it is not surprising that the �’s are not much changed. A more drastic step is to

force the estimated �s coefficient to be zero, in order to provide an upper bound on the possible

transmitted bias. That reduces the estimated �s coefficient from 0.69 to 0.47 but has little effect

on  the other factor-bias coefficients. The URS-restricted �l estimate rises from -1.80 to -1.64,

which can be thought of as an upper bound for the rate of labor saving technological change.

The main conclusions of Table 4 are robust to corrections for endogeneity and

measurement error biases: very strong evidence that technological change had an absolute labor

saving bias, weaker but statistically significant evidence of an absolute capital-bias, and evidence

of absolute skill-bias on the borderline of statistical significance. Evidence of relative skill-bias is

quite strong, which is consistent with the literature discussed in the introduction.

TFP Function Estimates

The total factor productivity specification is more flexible in many ways than the

production function. It requires no functional form assumptions except on the factor bias terms. In

particular, it does not impose unitary elasticity of substitution between factors. It does require the

(standard) assumptions of constant returns to scale and competitive markets to define TFP. (Note

that constant returns were not rejected in the specifications estimated in Table 3, except in the

first, -which did not include country effects).

Table 6 reports estimated factor-bias terms as specified in equation (11) of section II.

Despite the difference in specification, the � estimates are quite similar to those obtained from a

production function, though smaller in absolute value. Begin with the preferred specification (in

the middle row), which includes country and industry effects.  The estimated coefficient on

production workers is large and negative at -1.83% (s.e.=0.49%), showing absolute labor saving

technological change. The coefficients on nonproduction workers and capital are positive at

0.53% and 0.71% but not significantly different from zero, providing weak evidence of absolute

skill-bias and absolute capital bias. 

The sum of factor bias terms is -0.59% (0.33), indicating weak evidence for a decline in

returns to scale. If we assume unchanging returns, the implied estimate of �l from the restricted

regression is -1.49% (0.43). That estimate is only slightly smaller in absolute value than the
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restricted estimate of �l (-1.80%) in the production function specification. Like the production

function estimates, these estimates imply substantially faster TFP growth for skill and capital

intensive industries.

Omitting industry effects changes the estimated �l coefficient to -0.98. That change

indicates TFP growth disproportionately concentrated in industries with high levels of production

employment, conditional on country (as in the production function specification). Omitting

country effects as well tends to lower the estimated �l and �s  coefficients in absolute value, while

raising the coefficients on capital. I.e., countries with high levels of capital and low levels of

employment tended to have faster measured TFP growth. 

Recalling the discussion of potential biases above, the TFP specification is vulnerable to

endogeneity bias. Country-industry specific productivity or price shocks could cause an

endogenous adjustment of factor levels (l, s, and k), which are measured by averaging the first and

last measurements of the decade. In the production function estimates endogeneity bias was not a

discernible problem, as shown by the similarity of instrumental variable and least squares

estimates.  So it’s hard to see how they would be a major problem in this specification. If the

major form of adjustment is through unskilled labor (which has the lowest adjustment costs), then

endogeneity bias could explain why the TFP estimates have a less negative �l estimate.

Unfortunately, the instrument available in the production function specification, the lagged factor

levels, ft-1, are not valid here, - they are spuriously correlated with any measurement error in �f,

which appear in the calculation of �TFP on the left-hand side of (11). (Those would tend to bias

estimated coefficients upwards as they induce a positive spurious correlation with the error term.

Thus, they do not help establish a lower bound for a bias that is probably upwards.) A

conservative approach would be to borrow the estimated m ( 8%) from the production function

specification and deflate the URS-restricted estimate of �l from -1.49 to -1.37. 

Summarizing the three tables, both approaches show the same pattern: statistically

significant evidence of absolute labor-saving technological change, weaker evidence of absolute

skill-biased technological change and evidence of capital-biased technological change that is

statistically insignificant in the TFP specification but significant in the production function

specification. The restricted �l estimate summarizes the results neatly (though the sum of factor
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bias terms rejects that restriction, the unrestricted estimates would make the following a slight

understatement): conditional on industry and country effects, and allowing for fixed country and

industry specific measurement error, a manufacturing industry in the 1980s with double the K/L

ratio and double the S/L ratio is predicted to have an annual TFP growth rate 1.4 to 1.8 percent

higher. That is a remarkable level of labor saving technological change, compared with the sample

average TFP growth rate of 1.6 percent 



15  Part of the difference may be due to reallocation of production between industries. Table 7
below suggests that these reallocations favor production workers in middle income countries but work
against them in high income countries. Yet reallocation between industries is too small to provide most of
the answer. A more likely explanation is that the assumptions about supply and demand in labor market,
which underly that calculation, are too restrictive. In particular, the Cobb-Douglas implies a unitary
elasticity of factor demand. If manufacturing demand for unskilled labor is elastic, then a decline in demand
for less skilled workers could result in a very small decline in their wagebill share.
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Middle Income Countries and The Technology Transfer Hypothesis

Tables 4-6 all report extremely high rates of labor saving technological change. Are these

estimates too large to be believed?  In the Cobb-Douglas specification the �l coefficient represents

the shift in value-added share of production workers. Using that approach, the shifts reported in

Table 1 suggest values of �l between -0.2% and -0.5%, which are only a fraction of the estimates

in Tables 4-6 (-1.4% to -1.8% ).15 Estimated labor saving technological change is also high in

another sense. If �l is about 0.3 and  �l is about -.015, then in 20 years production workers will be

quite useless in production! 

A possible explanation for such strong evidence of factor-bias comes from the hypothesis

of skill-biased technology transfer. Previous research suggested that during the 1980s middle

income countries absorbed several vintages of technology from high income countries [Berman

and Machin, 2000]. Perhaps this accelerated  technological catchup induced factor bias in the

1980s for middle income countries at a rate much faster than that experienced at the technological

frontier. (E.g., if technological convergence is 4 times as fast in middle income countries as the

rate of advance at the frontier, then the labor-saving rate would be 4�l in middle income

countries.)

Accelerated factor-biased technology transfer in middle income countries implies that

evidence of factor-bias be stronger in the middle income countries than in the high income

countries in the1980s. Table 7 provides a test of that implication, reporting separate regression

estimates for the nine high income countries and the ten middle income countries. Dividing the

sample reduces precision. To make the interpretation easier I report only the URS-restricted

results.

The high income countries provide a surprise. While the estimates without industry effects

are similar to those reported for the sample as a whole, the preferred specification (with country



16 These results suggest that  the ambiguity expressed by Kahn and Lim [1998] about the
interpretation of their estimates as evidence of skill augmenting technological change was well founded.
They could not include industry effects in the same way as they had only one country to work with.
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and industry effects) reports labor-biased technological change which is capital-saving! These

coefficients are statistically insignificant, so they should not be interpreted as overturning the large

body of evidence in the  literature suggesting skill-bias in the U.S. and other high income

countries. It is more likely that at the level of resolution this method has, we cannot find skill-bias

in these countries. 

More interesting is the contrast between the estimated factor-bias coefficients in middle

and high income countries. Unlike the high income countries, the 10 middle income countries

show strong evidence of capital-bias and of labor savings in technological change (in the preferred

specification, including country and industry effects). The coefficient indicating skill-bias is

positive but imprecisely estimated. The implied �l estimate is -2.71% (0.84), indicating very

strong evidence of substantial labor-saving technological change in middle income countries.

These results reinforce the view that middle income countries absorbed several vintages of factor-

biased manufacturing technology in the 1980s, so that a  �l estimate of  -1.5% (or even -2.5%)

overestimates the trend rate of labor-saving technological change at the frontier.

The contrast between estimates with and without industry effects in high and middle

income countries sheds light on the sector-bias hypothesis of Haskell and Slaughter [1998].

Apparently, industry-specific measured productivity growth worked against production workers

in the high income countries.16 In the middle income countries the contrast between the results

with and without industry effects indicates that industry effects in measured productivity favored

production workers. Overall the pattern in both subsamples of countries is consistent with the

prediction of Heckscher-Ohlin trade theory in a period of declining trade restrictions: price

changes favored capital and skill intensive industries in countries with high skill and high capital

intensity, while price changes favored industries intensive in unskilled labor in countries with low



17 The pattern of these price effects is inconsistent with the argument that demand for skills
increased in middle income countries because of foreign outsourcing to low income countries [Feenstra and
Hanson 1996], as that would predict industry effects in the opposite direction.
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skill and low capital intensity.17 Once these industry effects in productivity growth are accounted

for, the full extent of labor saving technological change in middle income countries is evident. 

5.  IMPLICATIONS

The estimates assuming unchanging returns lend themselves to straightforward

interpretation. The U.S. has about twice the measured K/L and S/L ratios as Cyprus and Portugal.

The estimated rates of labor-saving bias, between 1.4% and 1.8% annually, imply TFP growth

rates 1.4 to 1.8 percent higher in U.S. manufacturing than in the manufacturing sectors of those

countries. Thus, all other things equal, manufacturing value added per worker will diverge quite

quickly, with the labor productivity gap doubling every 39-50 years.

So why don’t we observe divergence? Capital intensity in middle income countries is

about half that of high income countries, and skill intensity is about 2/3 (though correcting for

measurement error would lower that figure). For lower income countries the factor intensity gap 

is even larger.

One possible explanation for lack of TFP divergence is that suggested at the outset:

replication is faster than invention, so that technological catch up compensates for factor bias.

Another possibility is that URS does not hold in the 1980s, despite the replication argument

offered:  smaller industries had higher TFP growth rates, a force which favored convergence and

partially compensated for the factor bias effect. This is the pattern suggested by the data when the

sum of estimated � coefficients is negative. Note that those estimates cannot be interpreted as

evidence for technological catch up across countries (or industries), as they are present in

specifications that already include country effects.

The extent of compensation for factor bias (through these or some other mechanisms) can

be roughly estimated by seeing how much of the cross-country variance in TFP growth rates is

explained by country effects in a (URS restricted) regression which allows factor-bias. This

calculation is not completely accurate: estimated country effects include not only the true country



18 A constant has been added to estimated country effects so that their mean is the same as that of
the TFP growth rate. Otherwise they would reflect the conditional mean TFP growth rate with S/L and 
K/L set equal to unity, which would be an unusual country indeed.
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effect in TFP growth but also an estimation bias due to measurement error in factor levels (as

shown in equation (10)). For instance, if a country miscodes less-skilled labor as skilled, and �s +

�l is negative, the estimated country effect will be biased downwards.

Figure 5 reports the result of that exercise in a plot of TFP growth rates against

GDP/capita. Points labeled are the country effects in the industry and country effects specification

for the pooled sample, reported in the rightmost column of Table 4.18 Squares represent TFP

growth rates for these countries, as in the right panel of Figure 2. Estimated country effects

exceed TFP growth in all but one middle income country (Columbia) and are lower than the TFP

growth rate in all high income countries. Thus, the country effects show a negative correlation

(illustrated by the regression line), indicating that once we account for factor-bias, there is

evidence of TFP convergence. That negative correlation should not be overemphasized, as t=-0.9

in that regression. On the other hand, if middle income countries did not tend to overstate

measured skill intensity the slope would be even more negative. Similarly, if we used the middle-

income factor-bias coefficients from Table 7, the slope would also be more negative. For these

two reasons, TFP convergence conditional on factor-bias is stronger than indicated by the figure.

A final implication of labor saving technological change is this:  If ratios of capital and

skilled labor to unskilled labor are increasing (as would be efficient), TFP must accelerate under

the simplifying assumption that �Uf = �f . This is apparent from equation (5), which implies

that   under the assumption. That implication is difficult to test because

TFP fluctuates considerably over time. Nevertheless, two things are worth noting: First,  in the

very long run measured labor productivity has accelerated [Kremer 1993], and second, that this

TFP acceleration is a fairly direct implication of the considerable evidence of skill-bias in the labor

economics literature (cited above).



19 For a survey see Barro and Sala-I-Martin [1995], Ray [1998] or Weil [2000].
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6.  CONCLUSIONS

Factor-biased technological change provides a plausible explanation for the lack of cross-

country convergence in total factor productivity. Factor bias is now a familiar finding for

developed countries in the labor economics literature. In the countries sampled, most of the cross-

national variation in growth rates of manufacturing value added per worker is TFP growth. Thus

a factor-bias explanation for lack of convergence in TFP growth rates provides most of the

explanation for lack of convergence in value added per worker in manufacturing. These, in turn,

are highly correlated with (nonconvergent) growth rates in GDP/capita.

Most of the evidence on reasons for slow international convergence in income levels is

due to cross-country variation and to studies of market failures within individual countries.19

Within-country variance from the manufacturing industries of a large number of countries provide

a fresh, orthogonal, source of information. These data yield strong evidence that technological

change is absolutely labor-saving, absolutely capital-biased and relatively skill-biased. Estimates

are large, suggesting that a country or industry with twice the capital and skill intensity will have a

total factor productivity growth rate 1.4% - 1.8% higher annually. The data are unusually rich,

allowing estimation of factor-bias coefficients which allow for country and industry effects in TFP

growth. Estimated factor bias coefficients are driven for the most part by the ten middle income

countries, suggesting that accelerated technology transfer to these countries in the 1980s caused

unusually rapid, factor-biased technological change. 

These results are based on manufacturing data from a single decade, so extrapolation to

entire economies over longer periods should be done with caution. On the other hand, these data

show considerable similarity to the Baumol-Barro-style 1960-90 nonconvergence diagram (the

triangles and correlations of Section 2). So let’s hazard the extrapolation anyway.

The good news inherent in these results is that a country accumulating skill and capital

intensity has a twofold benefit: there is both an immediate increase in labor productivity and a

repositioning which increases the benefit from future (absolute) skill and (absolute) capital bias in

technological change. In this second sense current savings increase future growth. 



20 That is the prediction of a model with  constant returns to skill and capital combined
[Barro1991]. Interestingly, these data cannot reject that possibility, especially for the middle income
countries for which the point estimates indicate slightly increasing combined returns for skill and capital.
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Yet, Solow convergence through factor accumulation is quite slow in the 1960-90

period20 (in these data or in Mankiw, Romer and Weil 1992, for example).  Whatever economic

mechanisms slowed factor accumulation in poorer countries over recent decades positioned them

badly for factor-biased TFP growth.

Does factor-bias forever stifle convergence? Return to the two-factor illustration in Figure

3 and imagine a (closed economy) Solow or Ramsey growth model augmented with labor saving

technological change. Designate B as the Ramsey steady state in which the marginal product of

skill (human capital) is equal to the rate of time preference. Cross country convergence would be

the motion from A to B, as skill-scarce (but otherwise identical) countries increase skill-intensity

(S/L) and thus decrease the disparity in income per capita. The relative wages of skilled workers

fall along this path till they reach their Ramsey steady state level.

Now consider the comparative statics of a (surprise) skill-biased technological change

which shifts the isoquant for all countries from Ft-1 to Ft. The new Ramsey steady state will be at a

point like D, where the marginal product of skill is again equal to the rate of time preference. The

shift in isoquants implies faster TFP growth for countries with higher skill intensity and causes

divergence in income per capita. 

Thus the Ramsey model augmented with factor-biased technological change admits both

periods of divergence and periods of convergence. This interpretation of the cross-country data is

inherently hopeful about convergence. Despite factor-bias, eventually Solow’s decreasing returns

mechanism induces all countries to arrive at point D, with equal income per capita.

That argument underscores the importance of establishing the relative importance of

factor-bias, market failures in accumulation and failures in technology transfer in explaining slow

convergence. An examination of the1990s, during which factor-biased technological change may

have spread to low-income countries such as China and India, would be a first empirical step in

that agenda.  
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Table 1.  Factor Shares in Value Added

Middle Income High Income

~1980 ~1990 change ~1980 ~1990 change

production 25.5 23.1 -2.4 30.3 25.7 -4.6

nonproduction 10.1 10.2 +0.1 18.4 18.0 -0.4

capital 64.4 66.7 +2.3 51.3 56.3 +5.0

Notes: The wagebill shares of production and nonproduction workers are wagebill/value added. The capital
share is the complement so that the three shares sum to one. These figures are calculated from the UN GIS
database, using the same sample as regression results in the other Tables, which is restricted to countries
for which capital can be calculated both near the beginning and near the end of the 1980s. Middle Income
countries have GDP per capita between $2,000 and $10,000 US in 1980. They are: Turkey, Columbia,
Czechoslovakia, Malta, Portugal, Chile, Cyprus, South Korea, Ireland and Spain. High Income countries
(those with GDP per capital above $10,000 US) are: Japan, UK, Austria, Finland, Denmark, West
Germany, Sweden, Australia, US.
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Table 2. Sample Descriptive Statistics - 1980

Country GDP/capita Manuf. Manufactur Manufactu Annual Annual Proportion Years of
(1985 $) Value

Added /
Worker ($)

Value
Added as
% of GDP

Employme
nt

(1000s)

Production
Wage ($)

Non-
Production
Wage ($)

Non-
production

education
/adult

A. Middle Income Group
Turkey 2872 5780 14 795 3290 4312 0.22 2.6
Colombia 2948 4662 23 508 2660 5139 0.27 4.2
S. Korea 3093 6764 28 2015 3346 4772 0.21 6.8
Czecho-
slovakia.

3731 5651 - 2472 2780 3064 0.27

Chile 3898 7472 21 206 4711 14496 0.27 5.9
Malta 4488 7790 - 25 5826 11584 0.15 6.3
Portugal 4982 2390 - 663 4157 6766 0.14 3.2
Cyprus 5289 6990 - 36 4884 7252 0.16 7.2
Ireland 6828 11894 - 212 12929 18383 0.19 7.6
Spain 7391 8835 - 1159 11842 16478 0.23 5.2

B. High Income Group
Japan 10068 18467 29 10500 10506 11908 0.46 8.2
UK 10161 13988 27 6462 14559 19045 0.30 8.3
Austria 10499 15657 25 679 11602 19309 0.30 6.2
Finland 10843 16256 28 531 13645 20597 0.24 9.6
Denmark 11333 15664 20 381 22356 29948 0.28 10.1
W.  Germany 11916 20262 - 6302 20810 31450 0.28 8.5
Norway 12141 14360 15 354 18619 25869 0.26 10.3
Sweden 12447 17813 23 853 17520 27207 0.29 9.5
Australia 12518 15702 19 1138 16380 19517 0.26 10.1
US 15311 40078 22 19200 18357 28145 0.28 11.9

Notes: All manufacturing figures are author’s calculations from the United Nations General Industrial Statistics
Database. These apply to 1980, except where otherwise noted. GDP/capita, is from the Penn World Tables. Percent
of GDP in manufacturing is from World Development Indicators, 1999. Years of education/adult (aged 25 or more)
are from the Barro-Lee data. All pecuniary figures reported in 1985$ deflated by the implicit Laspeyres GDP
deflator in the Penn World Tables. 

1 Employment reflects the sample rather than the population. Samples typically include only plants with ten or
more employees.
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Table 3. Descriptive Statistics for Estimation

All 19 
countries

10 middle income
countries

9 high income
countries

Growth rate (x100):

 total factor        
productivity

1.62 (3.47) 1.72 (4.59) 1.52 (1.82)

 value added 3.11 (5.30) 4.16 (6.90) 2.10 (2.71)

 production -0.73 (3.16) -0.02 (3.65) -1.42 (2.42)

 nonproduction 0.62 (3.36) 1.44 (3.91) -0.18 (2.49)

 capital 2.64 (3.47) 3.70 (4.24) 1.62 (2.07)

Log level of:

 production 10.44 (1.83) 9.64 (1.73) 11.20 (1.59)

 nonproduction 9.46 (2.05) 8.44 (1.82) 10.45 (1.76)

 capital 21.53 (2.09) 20.40 (1.90) 22.62 (1.63)

Observations 422 197 225

Notes: Each observation is a country-industry. Of the 532 potential observations (28 industries x 19
countries) 422 are available (79%). Appendix 1 provides details of coverage by industry. Standard
deviations in parentheses. Observations are weighted by their value-added share within each country. Total
factor productivity is calculated using wagebill shares in value added as weights. Those weights are
predicted by regression using a full set of country and industry indicators. Production worker weights are
predicted with an R2 of 0.84 and nonproduction worker weights are predicted with an R2 of 0.77. Capital
weights are calculated as the complement so that the weights sum to one. 
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Table 4: Factor Bias Estimates from a Production Function

Dependent variable: Annualized change in log value added (x100)

country effects ..& industry
effects

.. & impose
unchanging

returns

production -1.46 -1.24 -2.15

(0.72) (0.44) (0.51)

nonproduction -0.17 0.77 0.69 0.89

(0.69) (0.29) (0.43) (0.44)

capital 1.51 0.58 0.87 0.91

(0.61) (0.45) (0.41) (0.42)

� production 34.9  22.5 21.5 19.3

(12.9) (14.5) (13.8) (14.2)

� nonproduction 27.1 41.7 48.6 49.9

( 9.9) (9.4) (9.2) (9.5)

� capital 77.4 44.8 37.9 37.3

(8.3) (8.5) (6.6) (7.0)

19 country effects x x x

28 industry effects x x

R2 0.65 0.84 0.87 0.87

Sum of elasticities
(�’s)

139
(10)

109
(09)

108
(11)

107
(11)

sum of factor bias
coefficients (�’s)

-0.11
(0.20)

0.10
(0.13)

-0.59
(0.24)

0
-

�l  assuming
unchanged r.t.s.

-1.80
(0.51)

Notes: All specifications include 422 observations of industries within countries. Standard errors (in
parentheses) are heteroskedasticity-consistent, allowing a country specific grouped error term.
Observations are weighted by value added share within each country. The sum of factor bias coefficients
sums estimated coefficients of production workers, nonproduction workers and capital. The coefficient �l 
assuming unchanged returns to scale is the estimated coefficient on production workers, using the same
specification but restricting the three factor bias coefficients to sum to zero. The “constant returns”
specification imposes constant returns to scale. The dependent variable in that case is �log(value added)-
�log(production). For descriptive statistics see Table 3. Estimating equation is (10) in text.
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Table 5: Factor Bias Estimates from a Production Function 
- Specification Checks

Dependent variable: Annualized change in log value added (x100)

lag level
instru-
ments

..&  un-
changing
returns

impose
constant
returns

..&  un-
changing
returns

impose 
�s = 0

..&  un-
changing
returns

production -2.10 -2.07 -2.07 

(0.55) (0.53) (0.58)

nonproduction 0.63 0.82 0.70 0.89 0.47 0.71

(0.42) (0.44) (0.42) (0.43) (0.52) (0.52)

capital 0.89 0.93 0.82 0.87 0.87 0.93

(0.42) (0.43) (0.38) (0.41) (0.43) (0.45)

� production 21.5 19.4 17.1  15.8 58.2 56.7

(13.9) (14.2)  -  - (10.4) (10.9)

� nonproduction 48.6 49.8 48.4 49.6 0 0

(9.2) (9.5) (9.1) (9.5) - -  

� capital 37.9 37.3 34.5 34.6 48.5 48.1

(6.6) (7.0) (5.4) (5.5) (7.4) (7.9)

19 country effects &
28 industry effects x x x x x x

R2 0.87 0.87 0.78 0.77 0.84 0.84

Sum of elasticities
(�’s)

108
(11)

107
(11)

- - 107
(12)

105
(12)

sum of factor bias
coefficients (�’s)

-0.57
(0.24)

0
-

-0.55
(0.26)

0
-

-0.72
(0.30)

0
-

�l  assuming
unchanged r.t.s.

-1.76
(0.57)

-1.76
(0.57)

-1.76
(0.52)

-1.76
(0.52)

-1.64
(0.55)

-1.64
(0.54)

Notes: All specifications include 422 observations of industries within countries. Standard errors (in
parentheses) are heteroskedasticity-consistent, allowing a country specific grouped error term.
Observations are weighted by value added share within each country. The sum of factor bias coefficients
sums estimated coefficients of production workers, nonproduction workers and capital. The coefficient �l 
assuming unchanged returns to scale is the estimated coefficient on production workers, using the same
specification but restricting the three factor bias coefficients to sum to zero. The “constant returns”
specification imposes constant returns to scale. The dependent variable in that case is �log(value added)-
�log(production). For descriptive statistics see Table 3. Estimating equation is (10) in text.
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Table 6.  Factor Bias Estimates using a TFP specification

Dependent variable: Annualized change in TFP (x100)

country effects ..& industry
effects

..&  un-changing
returns

production -1.34 -0.98 -1.83

(0.77) (0.46) (0.49)

nonproduction 0.13 0.78 0.53 0.73

(0.73) (0.36) (0.40) (0.38)

capital 1.11 0.41 0.71 0.76

(0.59) (0.47) (0.44) (0.46)

country effects x x x

industry effects x x

R2 0.09 0.59 0.65 0.65

sum of factor bias
terms (�’s)

-0.10
(0.21)

0.22
(0.13)

-0.59
(0.33)

0
-

�l  assuming
unchanged r.t.s.

-1.17
(0.54)

-1.04
(0.45)

-1.49
(0.43)

-1.49
(0.43)

Notes: All specifications include 422 observations of industries within countries. Standard errors (reported
in parentheses) are heteroskedasticity-consistent and allow a country specific grouped error term.
Observations are weighted by their value added share within each country. Total factor productivity is
calculated using wagebill shares in value added as weights. In all but the rightmost column those weights
are predicted using country and industry effects (see text and Table 3 for details). In the rightmost column
the TFP weights are calculated by averaging across all industries and countries. The sum of factor bias
coefficients sums estimated coefficients of production workers, nonproduction workers and capital. The
coefficient �l  assuming unchanged returns to scale is the estimated coefficient on unskilled labor,
calculated using the same specification but restricting the three factor bias coefficients to sum to zero. For
descriptive statistics see Table 3. Estimating equation is (11) in text.
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Table 7. Factor Bias Estimates: High vs. Middle Income Countries
Unchanged Returns Assumed

Dependent variable: Annualized change in log value added (x100)

High Income Middle Income

country
effects

..&
industry
effects

country
effects

..&
industry
effects

nonproduction 1.47 0.67 0.23 -1.25 1.05 1.28

(0.52) (0.45) (0.33) (1.33) (0.67) (1.28)

capital 0.12 0.27 -0.70 2.48 0.62 1.42

(0.35) (0.25) (0.63) (0.89) (0.89) (0.62)

� production 61.7 49.8 55.6  21.8 12.4 6.1

(14.8) (6.6) (7.4) (16.4) (20.8) (19.0)

� nonproduction -0.1 21.8 30.9 43.6 51.7 60.6

(10.4) (6.7) (5.2) (13.0) (14.1) (11.1)

� capital 23.0 19.2 11.2 84.2 50.5 41.7

(11.8) (4.4) (5.4) (10.0) (9.9) (10.4)

country effects x x x x

28 industry effects x x

R2 0.65 0.76 0.83 0.70 0.85 0.89

sum of elasticities
(�’s)

85
(10)

91
(6)

98
(8)

149
(11)

114
(13)

108
(16)

�l  assuming
unchanged r.t.s.

-1.60
(0.20)

-0.94
(0.23)

+ 0.46
(0.41)

-1.23
(1.00)

-1.67
(0.45)

-2.71
(0.84)

Observations 225 197

Notes: Standard errors (in parentheses) are heteroskedasticity-consistent, allowing a country specific
grouped error term. Observations are weighted by value added share within each country. The sum of
factor bias coefficients sums estimated coefficients of production workers, nonproduction workers and
capital. The coefficient �l  assuming unchanged returns to scale is the estimated coefficient on production
workers, using the same specification but restricting the three factor bias coefficients to sum to zero. The
“constant returns” specification imposes constant returns to scale. The dependent variable in that case is
�log(value added)-�log(production). For descriptive statistics see Table 3 . Estimating equation is (10) in
text.
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Table A1. Industry Coverage

Observations Value Added
Share 
(%)Industry 10 Middle

Income
Contries

9 High
Income

Countries

Total

Food 8 9 17 11.8
Beverages 8 8 16 4.3
Tobacco 7 7 14 1.9
Textiles 10 9 19 5.7
Apparel 9 9 18 4.0
Leather Products 10 8 18 0.5
Footwear 9 8 17 1.1
Food Products 9 8 17 2.5
Furniture 8 8 16 1.7
Paper Products 10 9 19 4.7
Printing & Publishing 10 9 19 5.5
Industrial Chemicals 6 8 14 3.6
Other Chemicals 7 7 14 4.4
Petroleum Refineries 6 6 12 1.5
Petroleum and Coal 3 5 8 0.2
Rubber Products 8 8 16 1.2
Plastic Products 5 9 14 2.3
Pottery & China 4 7 11 0.3
Glass Products 6 8 14 1.0
Non metalic minerals n.e.c. 7 8 15 3.2
Iron and Steel 4 8 12 2.5
Nonferrous metals 5 7 12 2.2
Metal Products 6 9 15 5.6
Machinery 8 9 17 9.8
Electrical Machinery 8 9 17 9.2
Transportation Equipment 8 8 16 6.4
Professional Goods 4 9 13 1.3
Other Goods 4 8 12 0.8

Total 197 225 422 100
Notes: Observations record the number of countries reporting for each industry at both the beginning and
end of the 1980s so that a useful observation existed. There are 28 2.5 digit ISIC industries and 19
countries so the potential number of industry-country observations is 532, of which 422 useful observations
are available. The value added share reports the average share of manufacturing value added in that
industry for countries reporting at the end of the 1980s.
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Figure 3: Technological Change with a Relative Skill Bias
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Figure 4: Leverage Plot of Labor-Saving Coefficient
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Figure 5: TFP Convergence Conditional on Factor Bias? 


